• 제목/요약/키워드: Weldment

검색결과 569건 처리시간 0.021초

W92-Ni-Fe 소결툴을 이용한 Cu-Ni 합금의 용접부미세조직과 경도 특성 (Investigation for Microstructure and Hardness of Welded Zone of Cu-Ni Alloy using W92-Ni-Fe Sintering Tool)

  • 윤태진;박상원;강명창;노중석;정성욱;강정윤
    • 한국분말재료학회지
    • /
    • 제22권3호
    • /
    • pp.181-186
    • /
    • 2015
  • In this study, the effect of the friction stir welding (FSW) was compared with that of the gas tungsten arc welding (GTAW) on the microstructure and microhardness of Cu-Ni alloy weldment. The weldment of 10 mm thickness was fabricated by FSW and GTAW, respectively. Both weldments were compared with each other by optical microstructure, microhardness test and grain size measurement. Results of this study suggest that the microhardness decreased from the base metal (BM) to the heat affected zone (HAZ) and increased at fusion zone (FZ) of GTAW and stir zone (SZ) of FSW. the minimum Hv value of both weldment was obtained at HAZ, respectively, which represents the softening zone, whereas Hv value of FSW weldment was little higher than that of GTAW weldment. These phenomena can be explained by the grain size difference between HAZs of each weldment. Grain size was increased at the HAZ during FSW and GTAW. Because FSW is a solid-state joining process obtaining the lower heat-input generated by rotating shoulder than heat generated in the arc of GTAW.

유한요소해석을 이용한 다층 FCA 맞대기 용접부의 횡 방향 잔류응력 평가에 관한 연구 (A Study on the Evaluation of Transverse Residual Stress at the Multi-pass FCA Butt Weldment using FEA)

  • 신상범;이동주;박동환
    • Journal of Welding and Joining
    • /
    • 제28권4호
    • /
    • pp.26-32
    • /
    • 2010
  • The purpose of this study is to evaluate the residual stresses at the multi-pass FCA weldment using the finite element analysis (FEA). In order to do it, an H-type specimen was selected as a test specimen. The variable used was in-plane restraint intensity. The temperature distribution at the multi-pass FCA butt weldment was evaluated in accordance with the relevant guidance recommended by the KWJS. The effective conductivity for the weld metal corresponding to each welding pass was introduced to control the maximum temperature below the vaporization temperature of weld metal. The heat flux caused by welding arc was assumed to be applied to the weld metal corresponding to welding pass. With heat transfer analysis results, the distribution of transverse residual stresses was evaluated using the thermo-mechanical analysis and compared with the measured results by XRD and uniaxial strain gage. In thermo-mechanical analysis, the plastic strain resetting at the temperature above melting temperature of $1450^{\circ}C$ was considered and the weld metal and base metal was assumed to be bilinear kinematics hardening continuum. According to the comparison between FEA and experiment, transverse residual stresses at the multi-pass FCA butt weldment obtained by FEA had a good agreement with the measured results, regardless of in-plane rigidity. Based on the results, it was concluded that thermo-mechanical FE analysis based on temperature distribution calculated in accordance with the KWJS’s guidance could be used as a tool to predict the distribution of residual stress of the multi-pass FCA butt weldment.

저사이클 피로 영역에서의 Alloy 617 모재와 용접재의 파괴 시험편에 대한 거시적 및 미시적 관찰 (Macro and Microscopic Investigation on Fracture Specimen of Alloy 617 Base Metal and Weldment in Low Cycle Fatigue Regime)

  • 김선진;랜도 디와;김우곤;김응선
    • 대한기계학회논문집A
    • /
    • 제40권6호
    • /
    • pp.565-571
    • /
    • 2016
  • 본 논문은 Alloy 617 모재와 용접재에 대한 저사이클 피로 시험 후의 파괴 시험편에 대한 거시적 및 미시적 파면해석을 나타낸다. 용접재 시험편은 Alloy 617의 가스텅그스텐아크 용접 패드로부터 채취, 제작하였다. 본 연구의 목적은 Alloy 617의 모재와 용접재 시험편의 저사이클 파괴 모드 및 기구의 거시적 및 미시적 양상을 고찰하는 것이다. 전변형률 제어 피로시험이 상온에서 0.6, 0.9, 1.2 및 1.5%에 대하여 수행되었다. Alloy 617 모재의 거시적 파면은 피로하중 축에 수직인 평평한 형태의 양상을 보였으나, 용접재 시험편의 경우는 상대적으로 전단/별모양의 양상의 파괴를 나타내었다. 두 시험편 모두 피로균열전파 영역에서는 명확한 스트라이에이션이 관찰되었다. 한편, 모재의 피로균열은 피로 하중 축에 수직인 방향으로 결정입내를 따라 전파하였으나, 용접재 시험편의 경우 하중 축에 거의 $45^{\circ}$의 경사진 형태의 결정입내로 나타났다.

필릿 용접부의 각변형량 예측에 관한 연구 (A study on the estimate of the angular distortion for a fillet weldment)

  • 양영수;이세환;조수형
    • Journal of Welding and Joining
    • /
    • 제15권4호
    • /
    • pp.63-69
    • /
    • 1997
  • Welding distortion is more serious problem than any other problems caused by welding process, especially, in the heavy-industrial place. These welding distortions are caused by nonuniform heating and cooling of metal during and after welding operations. And these distortion quantities are must be known to worker in production line because distorions are important role in assembling part. Therefore an analytical model to explain and predict the welding distortion are needed. A numerical analysis of welding distortion which is inelastic behavior of weldment would require the three dimensional calculation. But computing time and memory would be very large, and the resulting cost might be unacceptable. Therefore we use a numerical technique for two dimensional analysis in the section normal to the weld direction of weldment under an assumption of quasi-stationary conditions. But the result of the calculation under two dimensional(plane strain) assumption was not satisfied as compared with experimental result. This paper proposed a technique for analysing the welding angular distortion by using a constraint boundary condition on the two dimensional finite element model. The simulation results revealed that the constraint boundary model could more reasonably describe the welding distortion than the plane strain model did.

  • PDF

Evaluation of Fracture Strength and Material Degradation for Weldment of High Temperature Service Steel Using Advanced Small Punch Test

  • Lee, Dong-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • 제18권9호
    • /
    • pp.1604-1613
    • /
    • 2004
  • This paper presents an effective and reliable evaluation method for fracture strength and material degradation of the micro-structure of high temperature service steel weldment using advanced small punch (ASP) test developed from conventional small punch (CSP) test. For the purpose of the ASP test, a lower die with a minimized ${\Phi}$1.5 mm diameter loading ball and an optimized deformation guide hole of ${\Phi}$3 mm diameter were designed. The behaviors of fracture energy (E$\_$sp/), ductile-brittle transition temperature (DBTT) and material degradation from the ASP test showed a definite dependency on the micro-structure of weldment. Results obtained from ASP test were compared and reviewed with results from CSP test, Charpy impact test, and hardness test. The utility and reliability of the proposed ASP test were verified by investigating fracture strength, behavior of DBTT, and fracture location of each micro-structure of steel weldment for test specimen in ASP test. It was observed that the fracture toughness in the micro-structure of FL+CGHAZ and ICHAZ decreased remarkably with increasing aging time. From studies of all micro-structures, it was observed that FGHAZ microstructure has the most excellent fracture toughness, and it showed absence of material degradation.

J-적분을 이용한 후판 부분용입 다층용접재의 파괴 해석 (Fracture Analysis of Thick Plate for Partial Penetration Multi-pass Weldment Using J-integral)

  • 김석;송정일
    • 대한기계학회논문집A
    • /
    • 제26권2호
    • /
    • pp.300-307
    • /
    • 2002
  • Partial penetration welding joint is defined as groove welds welded from one side, without steel backing or groove welds welded from both sides but without back gouging. So it has an unwelded portion at the root of the weld. Study of partial penetration weldment fracture behavior includes residual stress analysis and fracture analysis. The J-integral loses its path independency in residual stress field. Therefore, it is necessary to introduce a new J-integral, J, which is defined including the effect of plastic deformation and thermal strain. In this study, theoretical formulation and program were developed for the evaluation of J-integral for the crack tip located in the weldment. Evaluations of fracture behavior were performed for partial penetration multi-pass weldment of 25.4mm thick plate by J-integral. From a point of fracture in partial penetration multi-pass welding, it seemed to be better to control root face smaller than 6.35mm.

전자비임용접한 $175Kg/mm^2$급 박판 Maraging강의 이음강도에 미치는 용접입열 및 열처리의 영향 (The effect of welding heat input and heat-treatment on the strength of the electron beam welded $175Kg/mm^2$ maraging steel sheet)

  • 윤한상;정병호;배차헌
    • Journal of Welding and Joining
    • /
    • 제4권2호
    • /
    • pp.21-29
    • /
    • 1986
  • The influence of welding heat input variation(600-900J/cm) and heat-treatment condition after welding on tensile strength of butt welded joint in $175Kg/mm^2$ strength level Maraging steel(Co-free and Co-containing) sheets was investigated on the basis of hardness distribution, microstructure of weld metal and fracture surface. The obtained main results are as follows; 1. The strength of weldment (UTS, NTS), joint efficiency showed a little decreasing tendency with the increase in welding heat input, and the elongation showed a little increasing tendency with the increase in the width of weld metal. It was considered because of the plastic constraint of the high strength base metal. 2. The strength of weldment was better in the solution treatment and aging than the aging only after welding due to the disappearance of almost denverite in weld metal. 3. The hardness distribution in weldment after welding and heat-treatment was almost similar to both Co containing and Co free Maraging steel with change in welding heat input. 4. The fracture was occurred at weld metal, and the fracture surface showed a relatively shallow dimples in both Co containing and Co free Maraging steel.

  • PDF

AH36-TMCP강의 용접후열처리 효과에 관한 연구 (A Study on Effect of PWHT in AH36-TMCP Steel)

  • 유효선;장원상;안병국;정세희
    • Journal of Welding and Joining
    • /
    • 제16권6호
    • /
    • pp.44-51
    • /
    • 1998
  • It is well known that the fine bainitic microstructure obtained by TMCP(thermo-mechanical control process) secures the high toughness of base metal. Besides, TMCP steel is very suitable for high heat input in welding as it has low carbon equivalent. In HAZ, however, the accelerated cooling effect imparted on the matrix by the weld thermal cycles is relieved and thus the weldment of TMCP steel has softening zone which shows low fracture toughness compared with base metal. Therefore, PHWT of weldment is carried out to improve the fracture toughness in weldment of TMCP steel which has softening zone. In this study, the effects of PWHT on the weldment of AH36-TMCP steel are investigated by the small punch (SP) test. From the several results such as SP energy and displacement at room temperature, the behavior of transition curves, the fracture strength at -196$^{\circ}C$, distribution of (DBTT)sp and (DBTT)sp, the PWHT condition of A.C. after 85$0^{\circ}C$-1 sec W.C. was suitable condition for recovering a softening zone of HAZ as welded.

  • PDF

Alloy 617 확산용접재의 고온 인장강도 (High-Temperature Tensile Strengths of Alloy 617 Diffusion Weldment)

  • 사인진;황종배;김응선
    • 한국압력기기공학회 논문집
    • /
    • 제14권1호
    • /
    • pp.15-23
    • /
    • 2018
  • A compact heat exchanger is one of critical components in a very high temperature gas-cooled reactor (VHTR). Alloy 617 (Ni-Cr-Co-Mo) is considered as one of leading candidates for this application due to its excellent thermal stability and strengths in anticipated operating conditions. On the basis of current ASME code requirements, sixty sheets of this alloy are prepared for diffusion welding, which is the key technology to have a reliable compact heat exchanger. Optical microscopic analysis show that there are no cracks, incomplete bond, and porosity at/near the interface of diffusion weldment, but Cr-rich carbides and Al-rich oxides are identified through high resolution electron microscopic analysis. In high-temperature tensile testing, superior yield strengths of the diffusion weldment compared to the code requirement are obtained up to 1223 K ($950^{\circ}C$). However, both tensile strength and ductility drop rapidly at higher temperature due to the insufficient grain boundary migration across the interface of diffusion weldment. Best fit curves for minimum yield strength and average tensile strength are drawn from the experimental tensile results of this study.