• Title/Summary/Keyword: Welding work process

Search Result 174, Processing Time 0.027 seconds

Development of Automatic Voltage Control Equipment using LabVIEW Software (LabVIEW를 이용한 TIG 용접 자동 전압 제어 장치 개발)

  • Song, Sang-Eun;Jeong, Young Cheol;Cho, Young Tae;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.112-117
    • /
    • 2017
  • The arc, generated by Tungsten Inert Gas(TIG) welding, is stable and provides excellent quality of the weld. Since automation is difficult, a lot of work is performed by hand. In addition, to obtain the uniform weld quality is difficult when using a base metal having a nonuniform welding line, or when welding inside a pipe. Generally, TIG welding power has the characteristic of constant-current. The welding voltage is changed in proportion to the arc length. Hence, the automatic voltage control equipment should be applied at the TIG welding system. The automatic voltage control equipment has been designed using LabVIEW software. It consists of a manufactured voltage divider circuit, and jig for moving the torch. The voltage measurements and driving of the motor were performed through the algorithm implementation in LabVIEW. Welding was conducted while increasing the arc length. In this process, it was confirmed that the automatic voltage control equipment kept the arc length constant.

ENHANCING TIG WELD PERFORMANCE THROUGH FLUX APPLICATION ATIG AND FBTIG PROCESSES

  • Marya, S.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.70-75
    • /
    • 2002
  • The penetration potential of TIG welding in one single run is limited, though the process itself generates high quality welds with good weld cosmetics. This is one of the main reasons, which has contributed to its development in high duty applications such as those encountered in aeronautical, aerospace, nuclear & power plant applications. For these applications, stainless steels, titanium k nickel based alloys are most often used. As these materials remain very sensible to weld heat input k atmospheric pollution, stringent processing conditions are imposed. For example welding of titanium alloys requires argon shielding of weld zone and for 5 mm thick plates multi-pass runs & filler additions are required. This multi-run operation not only raises the welding cost, but also increases defect risks. In recent years, extensive interest has been raised by the possibility to increase weld penetrations through flux applications & the process is designated ATIG-activated TIG, or FBTIG-flux bounded TIG. The improved welding performance of such flux assisted TIG is related to arc constriction and surface tension effects on weld pool. The research work by authors has lead to the formulation of welding fluxes for stainless steels k titanium alloys with TIG Process. These fluxes are now commercialized & some applications in industry have already been carried out. FBTIG for aluminum has been proposed with silica application for AC mode TIG welding. The paper highlights the fundamentals of flux role in TIG welding and illustrates some industrial applications.

  • PDF

A Study of Seam Tracking and Error Compensation for Plasma Arc Welding of Corrugation Panel

  • Yang, Joo-Woong;Park, Young-Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2701-2706
    • /
    • 2003
  • This paper describes weld seam tracking and error compensation methods of automatic plasma arc welding system designed for the corrugation panel that consists of a linear section and a curved section with various curvatures. Realizing automatic welding system, we are faced with two problems. One is a precise seam tracking and the other is an arc length control. Due to the complexity of the panel shape, it is difficult to find a seam and operate a torch manually in the welding process. So, laser vision sensor for seam tracking is equipped for sensing the seam position and controlling the height of a torch automatically. To attain more precise measurement of an arc length, we measure the 3D shape of the panel and analyze error factors according to the various panel states and caused errors are predicted through the welding process. Using that result, compensation algorithm is added to that of arc length control and real time error compensation is achieved. The result shows that these two methods work effectively.

  • PDF

Development of CO Laser-Arc Hybrid Welding Process

  • Lee, Se-Hwan
    • Laser Solutions
    • /
    • v.5 no.3
    • /
    • pp.15-20
    • /
    • 2002
  • The principal obstacle to selection of a laser processing method in production is its relatively high equipment cost and the natural unwillingness of production supervision to try something new until it is thoroughly proven. The major objective of this work is focused on the combined features of gas tungsten arc and a low-power cold laser beam. In this work, the laser beam from a 7 watts carbon monoxide laser was combined with electrical discharges from a short-pulsed capacitive discharge GTA welding power supply. When the low power CO laser beam passes through a special composition shielding gas, the CO molecules in the gas absorbs the radiation, and ionizes through a process blown as non-equilibrium, vibration-vibration pumping. The resulting laser-induced plasma(LIP) was positioned between various configurations of electrodes. The high-voltage impulse applied to the electrodes forced rapid electrical breakdown between the electrodes. Electrical discharges between tungsten electrodes and aluminum sheet specimens followed the ionized path provided by LIP. The result was well-focused melted spots.

  • PDF

Comparative Analysis of Exposure to Hazardous Factors of Welding Lab Activities in Specialized High School (특성화 고등학교 용접 실습의 유해인자 노출 실태 비교 분석)

  • Min-Ju Kim;Seong-Eun Jang;Hwa-Il Kim
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.34 no.2
    • /
    • pp.156-165
    • /
    • 2024
  • Objectives: This study aims to identify and analyze the exposure status of welding students in specialized high school welding labratories, compare it with the exposure to welding hazards of industrial workers, and seek to improve the educational environment for youth through domestic and international exposure standards. Methods: This study compares the level of exposure to hazardous factors in a welding laboratory of a vocational high school in Jeollanam-do and a welding process in a general industrial site by measuring the work environment. A 10-question survey was conducted to review the effects of welding hazards on the human body, carcinogenicity information, international (US, UK, France) exposure standards, general characteristics between the two groups, and awareness of occupational health. Results: Exposure to hazardous factors in both groups was below the standards set by MOEL. Specialized high school students were exposed to higher levels than workers, and some hazardous factors exceeded the standards when compared to international exposure standards. During the survey, students were less aware of the hazards of welding, safety and health education, and the need for work environment measurement than workers. Conclusions: For the respiratory protection of students in vocational high school welding labs, it is necessary to create a comfortable training environment. Exposure standards for harmful factors should be strictly applied, such as overseas standards, or exposure should be limited by setting a limit on the number of hours of welding practice per week. In addition, it is necessary to conduct safety and health education for welding students to raise their awareness of the importance of measuring the working environment and wearing appropriate protective equipment.

An Experiment Study for S/N Ratio of Bead Geometry for Guaranteeing the Welding Quality in Bellows Weld Joint (벨로우즈 용접부의 품질확보를 위한 비드형상 S/N비에 관한 실험적 연구)

  • Lee, Jong-Pyo;Kim, Ill-Soo;Park, Min-Ho;Jin, Byeong-Ju;Kim, In-Ju;Kim, Ji-Sun
    • Journal of Welding and Joining
    • /
    • v.35 no.2
    • /
    • pp.43-51
    • /
    • 2017
  • The automatic welding systems, have received much attention in recent years, because they are highly suitable not only to increase the quality and productivity, but also to decrease manufacturing time and cost for a given product. Automatic welding work in semiconductor or space industry to be carried out in pipe line and butt joint mostly and plasma arc welding(PAW) is actively applied. To get the desired quality welds in automated welding system is challenging, a mathematical model is needed that has complete control over the relevant process parameters in order to obtain the required mechanical properties. However, In various industries the welding process mathematical model is not fully formulated for the process parameter and on the welding conditions, therefore only partial variables can be predicted. Therefore, this paper investigates the interaction between the welding parameters and mechanical properties for predicting the weld bead geometry by analyzing the S/N ratio.

Soldering Process of Au Bump using Longitudinal Ultrasonic (종방향 초음파를 이용한 Au 범프의 솔더링 공정)

  • 김정호;이지혜;유중돈;최두선
    • Journal of Welding and Joining
    • /
    • v.22 no.1
    • /
    • pp.65-70
    • /
    • 2004
  • A soldering process with longitudinal ultrasonic is conducted in this work using the Au bump and substrate. Localized heating of the solder is achieved and the stirring action due to the ultrasonic is found to influence the bond strength and microstructure of the eutectic solder The acceptable bonding condition is determined from the tensile strength. Since the multiple bonds can be formed simultaneously with localized heating, the proposed ultrasonic soldering method appears to be applicable to the high-density electronic package.

Prediction on the Wear Resistance of Contact Tips for GMA Welding (GMA용접에서 콘택트팁의 내마모성에 대한 예측)

  • 김남훈;김희진;유회수;고진현
    • Journal of Welding and Joining
    • /
    • v.22 no.4
    • /
    • pp.35-42
    • /
    • 2004
  • Contact tips are required to have a higher resistance to wear and thus to have an extended life time under the advanced GMAW welding process. Several requirements have been specified and employed by domestic industries for selecting their tips for such a purpose. However no attempt has been made to justify their requirements based on the experimental data of wear resistance or life time of contact tips. In this study, five different contact tips with three different compositions were employed for actual GMA welding up to 4 hours and were evaluated their wear resistance by measuring in every one hour the area of enlarged hole at the exit side. Experimental results clearly showed that the Cr-containing tips strengthened by precipitation hardening have much better resistance to wear than those made by work hardening. It was further noticed that Cr is an excellent alloying element for improving the wear resistance of contact tips only when it is in an properly aged condition. Initial hardness may play some role in the early stage of wear but not in the later stage of welding because the microstructure of tip changes significantly by the prolonged exposure to welding arc heat. Based on these results, critical review has been made on the current requirements employed by domestic industries. Of importance is that a new guideline has been confirmed to be more reasonable.

Development of Automatic Welding Machine for Fish Trap Frame and Comparison of Shear Strength between Manual and Automatic Work at Welding Point (통발프레임 자동용접장비개발과 용접점에서 수작업과 자동작업의 전단강도 비교에 관한 연구)

  • Han, Chang-Min;Lee, Sang-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.129-134
    • /
    • 2017
  • The process of producing a fish trap frame is very complicated and manual, so it is expensive, the quality of the product is unstable, the quality is not guaranteed, the durability is weak, and it cannot be used for a long time. Therefore, we made a fish trap frame-making machine to reduce the manpower and costs and to make robust products. This machine cuts the wire of mild steel to a certain size and then makes the connecting parts into a trapezoid shape by spot welding. In this study, the weld point shear strength between manual and automatic operation was compared and analyzed.

Automatic Offline Teaching of Robots for Ship Block Welding Applications (선체 블록 용접을 위한 효과적 로봇 오프-라인 자동교시 소프트웨어 개발 연구)

  • Lim, Seang Gi;Choi, Jae Sung;Hong, Sok Kwan;Han, Yong Seop;Borm, Jin Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.5
    • /
    • pp.42-52
    • /
    • 1997
  • Computer aided process planning and Offline programming are decisive factors in successful implementation of automated robotic production. However, conventional offline programming procedure has proven ineffective due to time-consuming teaching process for robot programming and due to inefficient system modeling. The paper presents an efficient procedure to semi-automatically generate robot job programs for ship block welding applications. In the research, the teaching positions are automatically determined by predefined rules which are functions of the type and the dimensions of the given welding section of ship block. And a sequence of robot movements and welding conditions such as welding type, welding current, welding speed, and welding torch orientation, are determined by use of Standard Program which is experimentally proved to work well for the welding wection group. Finally, a robot program for the welding section is generated automatically. Based on the algorithm, a offline automatic teaching software is developed. The paper presents also the algorithm and structure of the software.

  • PDF