• 제목/요약/키워드: Welding structure

검색결과 864건 처리시간 0.026초

순수티타늄 용접재의 잔류응력분포에 관한 연구 (A Study on the Residual Stress Distribution of Pure Titanium Welding Material)

  • 최병기;권택용
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.70-75
    • /
    • 2002
  • It is generally applied constraint welding condition to structure manufacture in the industry field. But it is thinkable that the residual stress of the construction and specimens for experiment is different because not constraint welding but non-constraint welding are applied for experiment. To apply the constraint welding condition as the industry field and compare and evaluate the welding residual stress distribution, the TlG welding of the pure titanium was carried out under constraint and non-constraint welding conditions

  • PDF

클래드강 맞대기 용접부의 후열처리 유지시간에 따른 델타 페라이트 거동 (δ-Ferrite Behavior of Butt Weld Zone in Clad Steel Plates Depended on Holding Time of PWHT)

  • 박재원;이철구
    • Journal of Welding and Joining
    • /
    • 제32권2호
    • /
    • pp.29-36
    • /
    • 2014
  • Recently, in order to enhance the function and usefulness of products, cladding of dissimilar materials that maximizes the performance of the material is being widely used in all areas of industry as an important process. Clad steel plate, produced by cladding stainless steel plate, an anticorrosive material, on carbon steel plate, is being used to produce pressure vessels. Stainless steel plate has good corrosion resistance, and carbon steel plate has good rigidity and strength; clad steel can satisfy all of these qualities at once. This study aims to find the ${\delta}$-ferrite behavior, mechanical properties, structure change, integrity and reliability of clad steel weld on hot rolled steel plates. For this purpose, multi-layer welding, repair welding and post weld heat treatment were implemented according to welding procedure specifications (WPS). In order to observe the mechanical properties and toughness of clad steel weld zone, post weld heat treatment was carried out according to ASME Sec. VIII Div.1 UW-40 procedure for post weld heat treatment. With heat treatment at $625^{\circ}C$, the hold time was used as the process variable, increased by intervals that were doubled each time, from 80 to 1,280 min. The structure of weld part was typical cast structure; localized primary austenite areas appeared near central vermicular ferrite and fusion line. The heat affected zone showed rough austenite structure created by the weld heat input. Due to annealing effects of heat treatment, the mechanical properties (tensile strength, hardness, impact value) of the heat affected area tended to decrease. From the results of this study, it is possible to conclude the integrity of clad steel welds is not affected much in field welding, repair welding, multi-layer welding, post weld heat treatment, etc.

극후물재 용접부 내부잔류응력 측정기술 및 특성 (Characteristic and Measurement Technology of Inner Welding Residual Stresses in Thick Steel Structures)

  • 박정웅;안규백;우완측
    • Journal of Welding and Joining
    • /
    • 제34권2호
    • /
    • pp.16-21
    • /
    • 2016
  • Recent keywords of the heavy industries are large-scale structure and productivity. Especially, the sizes of the commercial vessels and the offshore structures have been gradually increased to deliver goods and explore or produce oil and natural gas in the Arctic. High heat input welding processes such as electro gas welding (EGW) have been widely used for welding thick steel plates with flux-cored arc welding (FCAW), especially in the shipbuilding industries. Because high heat input welding may cause the detrimental effects on the fracture toughness of the welded joint and the heat affected zone, it is essential to obtain the sufficient toughness of welded joint. There are well known that the fracture toughness like CTOD, CVN, and KIC were very important factors in order to secure the safety of the structures. Furthermore, the welding residual stress should be considered to estimate the unstable fracture in both EGW and FCAW. However, there are no references on the welding residual stress distribution of EGW and FCAW with thick steel plates. Therefore the welding residual stresses were very important elements to evaluate the safety of the welded structure. Based on the measurement results, the characteristics of residual stress distribution through thickness were compared between one-pass electron gas welding and multi-pass flux-cored arc welding. The longitudinal residual stress in the multi-pass flux-cored arc welding is tensile through all thicknesses in the welding fusion zone. Meanwhile, longitudinal residual stress of EGW is tensile on both surfaces and compressive at the inside of the plate. The magnitude of residual stresses by electron gas welding is lower than that by flux-cored arc welding.

연속파형 Nd:YAG 레이저를 이용한 Hastelloy C-276의 용접특성에 관한 연구 (A Study on the Welding Characteristics of Hastelloy C-276 using a Continuous Wave Nd:YAG Laser)

  • 나기대;유영태;신호준;오용석
    • Journal of Welding and Joining
    • /
    • 제26권5호
    • /
    • pp.49-59
    • /
    • 2008
  • Hastelloy C-276, corrosion resistant alloy at high temperature, is used in chemical plant and power generation industry. In this study, process parameter of laser welding for welding property in Hastelloy C-276 using a continuous wave Nd:YAG laser was studied. As the result of experiment, laser welding did not show segregation or crack at heat affected zone compared to conventional GTWA welding. The melting zone showed cell dendritic structure along with welding line. In addition, planer front solidification is occurred from welding structure, and it was progressed to cellular solidification. Optimal process parameter for butt welding was 1.2kW and 2.0 m/min for laser power and welding speed, respectively. While heat input, output density, tensile stress, and longitudinal strain was $441.98{\times}103$ J/cm2, $29.553{\times}103$ W/cm2, 768 MPa, and 0.689, respectively. Lap welding of the same material showed greater discrepancy in tensile property during 1 line and 2 line welding. For 1 line welding, tensile stress was about 320 MPa, and 2 line showed slightly larger tensile stress. However, strain was decreased by 20%. From this result, lap welding of the same material, Hastelloy C-276, with 2 line welding is considered to be more effective process than 1 line welding with consideration of mechanical property.

용접각변형에 미치는 용접길이의 영향 (The Effects of Welding Length on the Angular Distortion)

  • 박정웅;이해우
    • Journal of Welding and Joining
    • /
    • 제23권4호
    • /
    • pp.48-52
    • /
    • 2005
  • To estimate welding deformation for large steel structures, either experiment result with small specimen or analysis result of FEM with small numerical model is used. Consequently, it is important to decide the welding length of specimen and numerical model not to have an effect on welding deformation for accurate estimation of whole welding deformation. This study experimentally clarifies the effect of welding length on angular distortion due to welding by varying welding length of specimens, but fixing width and thickness of specimens on V-groove butt welding, fillet welding and bead on plate welding. As a resell the critical welding length on fillet welding and on bead on plate welding is over 500mm and on V-groove butt welding is over 1,000mm.

아크 점용접 구조물의 정밀 용접 열변형 해석에 관한 연구 (I) -온도 모니터링 및 열전달 모델 정립- (The Analysis of Welding Deformation in Arc-spot Welded Structure (I) - Temperature Monitoring and Heat Transfer Analysis -)

  • 이원근;장경복;강성수;조상명
    • Journal of Welding and Joining
    • /
    • 제20권4호
    • /
    • pp.544-550
    • /
    • 2002
  • Arc-spot welding is generally used in joining of precise parts such as case and core in electronic compressor. It is important to control joining deformation in electronic compressor because clearance control in micrometer order is needed for excellent airtightness and anti-nose. The countermeasures far this deformation in field have mainly been dependent on the rule of try and error by operator's experience because of productivities. For control this deformation problem without influence on productivities, development of exact simulation model should be needed. In this study, to solve this deformation problem in arc-spot welded structure with case and core, we intend to make a simulation model that is able to predict deformation in precise order by tuning and feedback between sensing data and simulation results. This paper include development of heat input model for arc-spot welding, temperature monitoring and make a heat transfer model using sensing data in product.

내외부 이중튜브구조를 갖는 핵연료봉의 봉단마개 용접시험 평가 (Evaluation of Endcap Welding Test for a Nuclear Fuel Rod having External and Internal Tube Structure)

  • 김수성;김종헌;김형규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1377-1380
    • /
    • 2008
  • An irradiation test of a nuclear fuel rod having external and internal tube structure was planned for a performance. To establish fabrication process satisfying the requirements of irradiation test, micro-TIG welding system for fuel rods was developed, and preliminary welding experiments for optimizing process conditions of fuel rod was performed. Fuel rods with 15.9mm diameter and 0.57mm wall thickness of cladding tubes and end caps have been used and optimum conditions of endcap welding have been selected. In this experiment, the qualification test was performed by tensile tests, helium leak inspections, and metallography examinations to qualify the endcap welding procedure. The soundness of the welds quality of a dual cooled fuel rods has been confirmed by mechanical tests and microstructural examinations.

  • PDF

박판 블록의 용접 좌굴 변형 해석에 관한 연구 (Study on the Analysis of Welding Induced Buckling Distortion in Thin Plate Block)

  • 장경복;박중구;양진혁;조시훈;장태원
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 추계학술발표대회 개요집
    • /
    • pp.23-25
    • /
    • 2005
  • This paper presents a numerical analysis method for predicting welding-induced deformation and buckling in ship block with thin plates. The numerical method is particularized on evaluating buckling distortion induced by welding. There are two steps in the numerical analysis model. One is to solve the eigenvalue problem of welded structure by elastic buckling analysis, and the other is to solve the welding-induced buckling distortion of welded structure by post-mechanical analysis. Equivalent force method was used for considering the shrinkage force by welding in the analysis model.

  • PDF

Introduction of Prediction Method of Welding Deformation by Using Laminated Beam Modeling Theory and Its Application to Railway Rolling Stock

  • Mun, Hyung-Suk;Jang, Chang-Doo
    • International Journal of Railway
    • /
    • 제2권4호
    • /
    • pp.175-179
    • /
    • 2009
  • The welding deformation and its prediction method at the HAZ (Heat-Affected Zone) are presented in this paper. The inherent strain method is well known as analytical method to predict welding deformation of large scale welded structure. Depend on the size of welding deformation in welding joints, the fatigue life, the stress concentration factor and the manufacturing quality of welded structure are decided. Many welded joints and its manufacturing control techniques are also required to railway rolling stock and its structural parts such as railway carbody and bogie frame. Proposed methods in this paper focus on the two different the inherent strain area at HAZ. This is main idea of proposed method and it makes more reliable result of welding deformation analysis at the HAZ.

  • PDF

Finite Element Analysis and Measurement on the Release of Residual Stress and Non-linear Behavior in Weldments by Mechanical Loading(I) -Experimental Examination-

  • Jang, K.B.;Yoon, H.S.;Cho, S.M.
    • International Journal of Korean Welding Society
    • /
    • 제2권1호
    • /
    • pp.40-44
    • /
    • 2002
  • Residual stress by welding should be reduced because that decreases the reliability on strength of welded structure. The reason is that the total stiffness of structure decreases by non-linear behavior of weldment under external load. The release of residual stress by mechanical loading and unloading is often performed in the fabrication of box structure for steel bridge. The proper degree of loading and unloading is significant at release method of residual stress by mechanical loading because that degree is changed by material and geometric shape of welded structure. Therefore, the simulation model that could exactly analyze the release of residual stress by mechanical loading is to be necessary. This simulation model should be established on the based of variable and accurate measurement data. In this study, the non-linear behavior of weldments under external loading and unloading, such as the decrease and increase of structure stiffness, was investigated by monitoring of nominal stress and strain. Tensile loading and unloading test under variable load was performed and the proper degree of stress relaxation was measured by sectioning technique using strain gauge.

  • PDF