• Title/Summary/Keyword: Welding robot

Search Result 268, Processing Time 0.026 seconds

PRACTICAL APPLICATION OF ARC WELDING ROBOT AND JOINT DESIGN FOR ROBOT WELDING OF STEEL STRUCTURES

  • Horikawa, Kohsuke
    • Proceedings of the KWS Conference
    • /
    • 1992.04a
    • /
    • pp.3-9
    • /
    • 1992
  • This paper introduces the present status of application of arc welding robots, construction, engineering subjects, design requirement, example of design modification for welding by arc welding robot. As a conclusion closer cooperation of robot engineer, welding engineer and structural designer is emphasised. This is the summary of the work done by Working Group for IIW Commission XV, chaired by the author.

  • PDF

Development of a task level automatic programming system for arc welding automation (아아크 용접 자동화를 위한 태스크 레벨 자동 프로그래밍 시스템 개발)

  • 박현자;이범희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1396-1399
    • /
    • 1996
  • With the progress in process automation, it becomes necessary that a robot should have various sophisticated capabilities. A robot programming language is a tool that can give a robot such capabilities without any change in robot architecture. Especially a task level automatic programming system enables a robot able to perform a job intelligently. Therefore anyone who is not an expert on welding or robot programming can easily use it. In this research, basic automatic welding program is combined with workspace information, which makes users do an arc welding job automatically.

  • PDF

3-D vision sensor for arc welding industrial robot system with coordinated motion

  • Shigehiru, Yoshimitsu;Kasagami, Fumio;Ishimatsu, Takakazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.382-387
    • /
    • 1992
  • In order to obtain desired arc welding performance, we already developed an arc welding robot system that enabled coordinated motions of dual arm robots. In this system one robot arm holds a welding target as a positioning device, and the other robot moves the welding torch. Concerning to such a dual arm robot system, the positioning accuracy of robots is one important problem, since nowadays conventional industrial robots unfortunately don't have enough absolute accuracy in position. In order to cope with this problem, our robot system employed teaching playback method, where absolute error are compensated by the operator's visual feedback. Due to this system, an ideal arc welding considering the posture of the welding target and the directions of the gravity has become possible. Another problem still remains, while we developed an original teaching method of the dual arm robots with coordinated motions. The problem is that manual teaching tasks are still tedious since they need fine movements with intensive attentions. Therefore, we developed a 3-dimensional vision guided robot control method for our welding robot system with coordinated motions. In this paper we show our 3-dimensional vision sensor to guide our arc welding robot system with coordinated motions. A sensing device is compactly designed and is mounted on the tip of the arc welding robot. The sensor detects the 3-dimensional shape of groove on the target work which needs to be weld. And the welding robot is controlled to trace the grooves with accuracy. The principle of the 3-dimensional measurement is depend on the slit-ray projection method. In order to realize a slit-ray projection method, two laser slit-ray projectors and one CCD TV camera are compactly mounted. Tactful image processing enabled 3-dimensional data processing without suffering from disturbance lights. The 3-dimensional information of the target groove is combined with the rough teaching data they are given by the operator in advance. Therefore, the teaching tasks are simplified

  • PDF

Development of robot welding program for gantry-type robot using neutral CAD data format (CAD중립파일을 이용한 켄트리형 ROBOT 자동용접 프로그램개발)

  • CHUNG JAEHOON;SHEEN DONGMOK
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.79-84
    • /
    • 2004
  • In this study, a robot welding programming system is developed for gantry-type robot using a neutral CAD data format. The system automatically extracts welding line data from tile CAD model represented in IGES format and generates a robot program based on the weld line extracted. The welding program is simulated jar verification by using IGRlP, a virtual manufacturing solution. The robot welding programming system is demonstrated with a simple example.

  • PDF

ON THE DEVELOPMENT OF STUD AND ARC WELDING DUAL-PURPOSE ROBOT SYSTEM (스터트 및 아크 용접 겸용 로보트 시스템의 개발)

  • 이용중;유범상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.582-587
    • /
    • 1993
  • A robot application system is developed for dual purpose of stud welding and are welding to weld plates in the manufacturing of elevator cabin. The production quantity is not so big to accommodate separate stations for stud welding and are welding respectively while the need for randomization of the processes is urgent. A robot with specification for spot welding is chosen, which is appropriate for stud welding. Some implementations are made so that the robot may also be shared for are welding process. Common jig and fixture is designed for the dual purpose. Important aspects in the procedure of system design, installation, and commissioning are stated, and signal set-ups and logic diagrams are illustrated.

  • PDF

Development of Spot Welding and Arc Welding Dual Purpose Robot Automation System (점용접 및 아크용접 겸용 로봇 자동화시스템 개발)

  • Lee, Yong-Joong;Kim, Tae-Won;Lee, Hyung-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.4
    • /
    • pp.73-80
    • /
    • 2004
  • A dual purpose robot automation system is developed for both arc welding and spot welding by one robot within a cell. The need for automation of both arc welding and spot welding processes is urgent while the production volume is not so big as to accommodate separate station for the two processes. Also, space is too narrow for separate station to be settled down in the factory. A spot welding robot is chosen and the function for arc welding are implemented in-house at cost of advanced functions. For the spot welding, a single pole type gun is used and the robot has to push down the plate to be welded, which causes the robot positioning error. Therefore, position error compensation algorithm is developed. The basic functions for the arc welding processes are implemented using the digital I/O board of robot controller, PLC, and A/D conversion PCB. The weaving pattern is taught in meticulously by manual teach. A fixture unit is also developed for dual purpose. The main aspects of the system is presented in this paper especially in the design and implementation procedure. The signal diagrams and sequence logic diagrams are also included. The outcome of the dual purpose welding cell is the increased productivity and good production stability which is indispensable for production volume prediction. Also, it leads to reduction of manufacturing lead time.

  • PDF

Development of Continuous/Intermittent Welding Mobile Robot (연단속 용접 주행로봇의 개발)

  • 강치정;전양배;감병오;신승화;김상봉
    • Proceedings of the KWS Conference
    • /
    • 2000.10a
    • /
    • pp.31-33
    • /
    • 2000
  • Welding processing is used in the various industrial fields such as shipbuilding, car, airplane and steel structure, etc.. But the welding process has a bad working condition and lack of skillful worker. The welding depended on man power causes low productivity and difficulty in keeping continuous and stable quality control. This paper shows the development results of welding mobile robot with the several functions such as continuous/intermittent welding, initial welding speed control, acceleration control, crater and deceleration speed control in welding end. The robot is developed based on microprocess which is intel 80c196kc.

  • PDF

On the Development of a Gas Metal Arc Welding Robot Controller (가스금속 아아크 용접용(Gas Metal Arc Welding) 로보트제어기 개발에 관한 개론)

  • Pee, Won-Il;Park, Byung-Gun;Kim, Jung-Ho;Koh, Kwang-Ill
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.376-379
    • /
    • 1993
  • GoldStar Industrial Systems Co. R & D center successfully developed the inverter for welding under the support of GoldStar Electric Machinery Co. Now, we are currently working on the mechanical part of articulated robot and a high-performance general purpose motion controller. By combining the above three items, we will be able to constitute the complete welding robot system on our own. In this article. the welding robot system currently under developing is introduced. The main focus will be placed on the development of general purpose motion controller with welding control module. Therefore, the architecture of welding robot controller where the general purpose motion controller is combined with the welding controller module will be explained. Here, the software system will be explained with regard to the hardware system.

  • PDF

Modeling and Control of Welding Mobile Robot for the Tracking of Lattice Type Welding Seam (격자형 용접선 추적을 위한 용접 이동로봇의 모델링 및 제어)

  • Lee, Gun-You;Suh, Jin-Ho;Oh, Myung-Suk;Kim, Sang-Bong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.923-928
    • /
    • 2003
  • This paper presents the motion control of a mobile robot with arc sensor for lattice type welding. Its dynamic equation and motion control method for welding speed and seam tracking are described. The motion control is realized in the view of keeping constant welding speed and precise target line even though the robot is driven along a straight line or comer. The mobile robot is modeled based on Lagrange equation under nonholonomic constraints and the model is represented in state space form. The motion control of the mobile robot is separated into three driving motions of straight locomotion, turning locomotion and torch slider controls. For the torch slider control, the proportional integral derivative (PID) control method is used. For the straight locomotion, a concept of decoupling method between input and output is adopted and for the turning locomotion, the turning speed is controlled according to the angular velocity value at each point of the comer with range of $90^{\circ}$ constrained to the welding speed. The proposed control methods are proved through simulation results and the results have proved that the mobile robot has enough ability to apply the lattice type welding line.

  • PDF

A Study on the Vision System Application for Welding Robot (용접 로봇을 위한 비젼 시스템 응용 연구)

  • Park, P. H.;Cheong, S. H.;Ro, S. H.;Choi, S. D.;Choi, H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.678-682
    • /
    • 2000
  • The purpose of this study is to develop a powerful 6-axes general welding robot utilizing a low cost vision system. The developed vision system is composed of a CCD camera, a PC with windows 98 OS, and a PC-Robot communication program using Visual C++. A test was carried out to investigate whether the welding torch can precisely follow up the welding path. It shows that the result of this study can readily be applied to practical welding operations.

  • PDF