• Title/Summary/Keyword: Welding rate

Search Result 589, Processing Time 0.021 seconds

Study on the tensile restraint crack characteristics in underwater welds of marine steel plates (선용 강판 수중용접부의 인장 구속 균열 특성에 관한 연구)

  • 오세규;강문호;김민남
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.45-52
    • /
    • 1987
  • Generally the factors affected largely by the cold cracking sensitivity of the weld are the quantity of the diffusible hydrogen, the brittleness and hardness of the bond area and the tensile restraint stress. These factors have relation each other, and if we can reduce one of these factors, it becomes instrumental to the root cracks prevention of weld. This study deals with the gravity type-underwater-welding of KR Grade A-3 marine steel plate using E4303 welding electrode in order to compare wet-underwater-welding with in-air- welding, resulting in obtaining the tensile restraint characteristics, the hardness distribution, the quantity of diffusible hydrogen and the macro- and micro-crack properties in both underwater and in-air welds. The main results obtained are as follows: 1) The quantity of diffusible hydrogen measured for 48 hours is about 18cc/100g-weld-metal for the in-air-weld of one pass and about 48cc/100g-weld-metal for the underwater-weld of one pass which is about 3 times penetration of diffusible hydrogen compairing with the case of the in-air-weld. However, it was experimentally confirmed that, by the multi-pass welding of 2 to 5 passes, the diffusible hydrogen in the underwater weld metal can be reduced as much as 27 to 49%. 2) The hardness of the weld metal indicates the highest value in the heat affected zones of underwater weld for more rapid cooling rate, resulting in the higher sensitivity of cold cracking. So, it is desirable to soften the higher hardness in the HAZ by tempering effect such as the multi-pass welding in the underwater welding. 3) At the bond vicinity of the underwater weld HAZ, micro cracks were found as resulted by both more rapid cooling rate and more diffusible hydrogen and also by the stress corrosion cracking under the tensile restraint stress in the underwater. But this could be prevented by the tempering effect of the following weld bead such as the multi-pass welding.

  • PDF

Optimal Welding Condition for the Inclined and Skewed Fillet Joints ill the Curved Block of a Ship (I) (선박 골블록의 경사 필렛 이음부의 적정 용접조건 (I))

  • PARK JU-YONG
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.6 s.61
    • /
    • pp.79-83
    • /
    • 2004
  • The curved blocks which compose the bow and stem of a ship contain many skewed joints that are inclined horizontally and vertically. Most of these joints have a large fitness error and are continuously changing their form and are not easily accessible. The welding position and parameter values should be appropriately set in correspondence to the shape and the inclination of the joints. The welding parameters such as current, voltage, travel speed, and melting rate, are related to each other and their values must be in a specific limited range for the sound welding. These correlations and the ranges are dependent up on the kind and size of wire, shielding gas, joint shape and fitness. To determine these relationships, extensive welding experiments were performed. The experimental data were processed using several information processing technologies. The regression method was used to determine the relationship between current voltage, and deposition rate. When a joint is inclined, the weld bead should be confined to a the limited size, inorder to avoid undercut as well as overlap due to flowing down of molten metal by gravity. The dependency of the limited weld size which is defined as the critical deposited area on various factors such as the horizontally and vertically inclined angle of the joint, skewed angle of the joint, up or down welding direction and weaving was investigated through a number of welding experiments. On the basis of this result, an ANN system was developed to estimate the critical deposited area. The ANN system consists of a 4 layer structure and uses an error back propagation learning algorithm. The estimated values of the ANN were validated using experimental values.

Characteristics of the Hard-Overlayers by WC-12%Co Powder Addition in MIG Welding of Al Alloy (Al 합금의 MIG 용접에서 WC-12%Co 분말에 첨가에 의한 경화육성층의 특성)

  • 박정식;양병모;박경채
    • Journal of Welding and Joining
    • /
    • v.18 no.6
    • /
    • pp.102-107
    • /
    • 2000
  • It was attempted to improve the wear resistance of Al alloy under the load condition by making a formation of the thick surface hardening alloy layers. The thick surface hardening alloy layers were formed on 6061 Al alloys overlayed by MIG welding process with WC-12%Co powder addition. Effects of the dispersion of WE-12%Co powders on hardness and wear characteristics of alloys were investigated. The following results were obtained. Most of WE-12%Co powders are dispersed nearly uniform as unmelted particles in the matrix alloy. A part of WC-12%Co powders are melted in the molten pool, and during solidification {TEX}$Al_{9}Co_{2}${/TEX} appeared. With increasing addition of WC-12%Co powders, the hardness and specific wear resistance of the overlay weld alloys increased and reached Hv450 at WC-12%Co powder addition rate of 54g/min. It is considered that excellent wear resistance of the overlayed alloys was due to dispersed WC-12%Co powders and increased 10 times at WC-12%Co powder addition rate of 54 g/min than that of the WC-free overlaying layers.

  • PDF

A Study on the Application of Vertical Welding Process to the Shipbuilding with High Deposition Rate (대입열 수직상진 용접의 조선적용에 관한 연구)

  • Park, Chul-Sung;Son, Young-Rak;Lee, Jeong-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.5
    • /
    • pp.482-487
    • /
    • 2007
  • The container mobilization of material resources has increased continually owing to international economy growth and overseas trade increase in recent years. There are large amounts of order received for container carriers which are the biggest in the world ranging from 8,000 TEU to 10,000 TEU or above The very large container carriers have minimum thickness of sheer strake, upper deck and hatch coaming about $65mm{\sim}90mm$. Therefore, this study is performed in order to develop vertical welding process with high deposition rates applicable to thick plate above 65mm thickness. Electrogas welding process with 1 pole and 2 poles has been developed to apply to vertical joint with thick plates in the shipyard. In this paper, it was explained that the relationship of cross section to various groove types and executed that electrogas welding for thick plates. The mechanical tests were carried out to verify the soundness and effectiveness of EGW.

Study of Welding Toughness Characteristics on the Root-pass Welding Process of High Tensile Steel at Tower Production for Offshore Wind Power Generation (해상풍력 발전용 타워 제작시 고장력강재의 초층용접에 관한 용접특성 연구)

  • Jung, Sung-Myoung;Kim, Ill-Soo;Kim, Ji-Sun;Na, Hyun-Ho;Lee, Ji-Hye
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.349-353
    • /
    • 2012
  • As the world wind energy market grows rapidly, the productions of wind power generation equipment have recently increased, but manufacturers are not able meet this requirement. Particularly offshore wind energy industry is one of the most popular renewable energy sectors. To generalize welding processes, the welding automation is considered for steel structure manufacturing in offshore wind energy to get high quality and productivity. Welding technology in construction of the wind towers is depended on progress productivity. In addition, the life of wind tower structures should be considered by taking account of the natural weathering and the load it endures. The root passes are typically deposited using Gas Tungsten Arc Welding(GTAW) with a specialized backing gas shield. Not only the validation consists of welders experienced in determining the welding productivity of the baseline welding procedure, but also the standard testing required by the ASME section IX and API1104 codes, toughness testing was performed on the completed field welds. This paper presents the welding characteristics of the root-pass welding of high tensile steel in manufacturing of offshore wind tower. Based on the result from welding experiments, optimal welding conditions were selected after analyzing correlation between welding parameters(peak current, background current and wire feed rate) and back-bead geometry such as back-bead width(mm) and back-bead height performing root-pass welding experiment under various conditions. Furthermore, a response surface approach has been applied to provide an algorithm to predict an optimal welding quality.

Development of a pulsed Nd:YAG laser materials processing system (정밀 용접용 펄스형 Nd:YAG 레이저 가공기 개발)

  • 김덕현;정진만;김철중;이종민
    • Journal of Welding and Joining
    • /
    • v.9 no.1
    • /
    • pp.32-39
    • /
    • 1991
  • A 200W pulsed Nd: YAG laser for fine welding was developed. The important laser parameters such as laser peak power, average power, pulse width, and pulse energy for welding were studied. In order to obtain the sufficient laser power density for welding, thermal lensing effects were analyzed and a laser resonator with laser beam divergence was designed. The power supply unit was designed to support up to 7kW input. The pulse control unit was developed using a GTO thyristor and could control over 100kW input power to obtain 3.5kW peak power laser. Also due to the GTO thyristor the pulse width could be varied continuously from 0.1 to 20 msec and maximum repetition rate was as high as 300pps.

  • PDF

A Study on Welding of Dissimilar Materials for Van-Ramp Design and Production (승합차의 램프 디자인과 제작을 위한 이종재료의 접합)

  • Lee, Jung-Hyun;Kim, In-Cheol
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.434-439
    • /
    • 2011
  • There are about 2.4million disabled in Korea, 2009. Also, Korean society entered into an aging society. Therefore disable and elderly are getting more involved in our society. This study proposes simple ramp design for wheel chair users and welding method and condition for manufacturing. In the middle of ramp, screw jack and motor are installed so that ramp can be moved left and right side. To make the ramp moves easily, ramp was fixed by installing LM guide on both sides. Ramp production for using Nd:YAG laser certain dissimilar welding in stainless steel sheet and cold reduced carbon steel. The output was fixed by 3kW, the speed was increased to 2~7m/min, Argon was used as shielding gas and the flow rate was changed to 10~30L/min. The proper welding condition is the output 3kW and welding speed 2~5m/min.

RECENT DEVELOPMENTS OF WELDING AUTOMATION AND ROBOTICS IN SHIPBUILDING

  • Jukka, Gustafsson;Mikko, Veikkolainen
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.732-736
    • /
    • 2002
  • The introduction of newly developed intelligent and user-friendly robotics has opened a new era in shipbuilding. Together with traditional and low-cost mechanization a record level of welding automation rate has been achieved in the construction of cruise vessels. In the paper modem applications and recent developments of welding automation and robotics in shipbuilding have been described and some forecast for the future trends are given. Development in the field of shipyards will be continued with accelerated speed and we shall have interesting prospects for the near future. New laser techniques can boost the shipyards in a revolutional way when production is rapidly changing, materials will be lighter and quality demands are becoming more strict.

  • PDF

A Modular Neural Network for The GMA Welding Process Modelling (Modular 신경 회로망을 이용한 GMA 용접 프로세스 모델링)

  • 김경민;강종수;박중조;송명현;배영철;정양희
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.369-373
    • /
    • 2001
  • In this paper, we proposes the steps adopted to construct the neural network model for GMAW welds. Conventional, automated process generally involves sophisticated sensing and control techniques applied to various processing parameters. Welding parameters are influenced by numerous factors, such as welding current, arc voltage, torch travel speed, electrode condition and shielding gas type and flow rate etc. In traditional work, the structural mathematical models have been used to represent this relationship. Contrary to the traditional model method, neural network models are based on non-parametric modeling techniques. For the welding process modeling, the non-linearity at well as the coupled input characteristics makes it apparent that the neural network is probably the most suitable candidate for this task. Finally, a suitable proposal to improve the construction of the model has also been presented in the paper.

  • PDF

A Study on the Laser Beam Weldability Using Zircaloy-4 Cladding Tube (지르칼로이-4 피복관을 이용한 레이저용접성 연구)

  • 박진석;김동균;김상태;양명승;김수성;이정원
    • Journal of Welding and Joining
    • /
    • v.20 no.6
    • /
    • pp.796-801
    • /
    • 2002
  • Corrosion and tensile properties of zircaloy-4 cladding tube having a laser welding part in elevated temperature are studied to present the criterion of quality evaluation in nuclear reactor and find the scientific basis of SCC, with laser welding method using by coupling up cladding tube to end cap. In the result of tensile test($400^{\circ}C$), the fracture is not happened in the welding part but base metal and the result of corrosion test($400^{\circ}C$ 1500psi steam), corrosion rate of the molten zone and PMZ is a little higher than the other zone.