• Title/Summary/Keyword: Welding pressure

Search Result 560, Processing Time 0.02 seconds

Reliability of COF Flip-chip Package using NCP (NCP 적용 COF 플립칩 패키지의 신뢰성)

  • Min, Kyung-Eun;Lee, Jun-Sik;Jeon, Je-Seog;Kim, Mok-Soon;Kim, Jun-Ki
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.74-74
    • /
    • 2010
  • 모바일 정보통신기기를 중심으로 전자패키지의 초소형화, 고집적화를 위해 플립칩 공법의 적용이 증가되고 있는 추세이다. 플립칩 패키징 접합소재로는 솔더, ICA(Isotropic Conductive Adhesive), ACA(Anisotropic Conductive Adhesive), NCA(Non Conductive Adhesive) 등과 같은 다양한 접합소재가 사용되고 있다. 최근에는 언더필을 사용하는 플립칩 공법보다 미세피치 대응성을 위해 NCP를 이용한 플립칩 공법에 대한 요구가 증가되고 있는데, NCP의 상용화를 위해서는 공정성과 함께 신뢰성 확보가 필요하다. 본 연구에서는 LDI(LCD drive IC) 모듈을 위한 COF(Chip-on-Film) 플립칩 패키징용 NCP 포뮬레이션을 개발하고 이를 적용한 COF 패키지의 신뢰성을 조사하였다. 테스트베드는 면적 $1.2{\times}0.9mm$, 두께 $470{\mu}m$, 접속피치 $25{\mu}m$의 Au범프가 형성된 플리칩 실리콘다이와 접속패드가 Sn으로 finish된 폴리이미드 재질의 flexible 기판을 사용하였다. NCP는 에폭시 레진과 산무수물계 경화제, 이미다졸계 촉매제를 사용하여 다양하게 포뮬레이션을 하였다. DSC(Differential Scanning Calorimeter), TGA(Thermogravimetric Analysis), DEA(Dielectric Analysis) 등의 열분석장비를 이용하여 NCP의 물성과 경화거동을 확인하였으며, 본딩 후에는 보이드를 평가하고 Peel 강도를 측정하였다. 최적의 공정으로 제작된 COF 패키지에 대한 HTS (High Temperature Stress), TC (Thermal Cycling), PCT (Pressure Cooker Test)등의 신뢰성 시험을 수행한 결과 양산 적용 가능 수준의 신뢰성을 갖는 것을 확인할 수 있었다.

  • PDF

Buckling Analysis of Circular Cylinders with Initial Imperfection Subjected to Hydrostatic Pressure (수압을 받는 원통형 실린더의 초기부정을 고려한 좌굴해석)

  • Nho, In Sik;Ryu, Jae Won;Lim, Seung Jae;Cho, Sang Rai;Cho, Yun Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.3
    • /
    • pp.267-273
    • /
    • 2017
  • Pressure hulls of submerged structures are generally designed as circular cylinders, spheres or cones with form of axisymmetric shell of revolution to withstand the high external pressure of deep ocean. The compressive buckling (implosion) due to hydrostatic pressure is the main concern of structural design of pressure hull and many design codes are provided for it. It is well-known that the buckling behavior of thin shell of revolution is very sensitive to the initial geometric imperfections introduced during the construction process of cutting and welding. Hence, the theoretical solutions for thin shells with perfect geometry often provide much higher buckling pressures than the measured data in tests or real structures and more precise structural analysis techniques are prerequisite for the safe design of pressure hulls. So this paper dealt with various buckling pressure estimation techniques for unstiffened circular cylinder under hydrostatic pressure conditions. The empirical design equations, eigenvalue analysis technique for critical pressure and collapse behaviors of thin cylindrical shells by the incremental nonlinear FE analysis were applied. Finally all the obtained results were compared with those of the pressure chamber test for the aluminium models. The pros and cons of each techniques were discussed and the most rational approach for the implosion of circular cylinder was recommended.

Experimental and Numerical Studies on Application of Industrial Explosives to Explosive Welding, Explosive Forming, Shock Powder Consolidation (산업용 폭약을 이용한 폭발용접, 폭발성형과 충격분말고화에 관한 실험 및 수치해석적 연구)

  • Kim, Young-Kook;Kang, Seong-Seung;Cho, Sang-Ho
    • Tunnel and Underground Space
    • /
    • v.22 no.1
    • /
    • pp.69-76
    • /
    • 2012
  • Theoretical backgrounds on the experimental methods of explosive welding, explosive forming and shock consolidation of powders are introduced. Explosive welding experiments of titanium (Ti) and stainless steel (SUS 304) plate were carried out. It was revealed that a series of waves of metal jet are generated in the contact surface between both materials; and that the optimal collision velocity and collision angle is about 2,100~2,800 m/s and $15{\sim}20^{\circ}$, respectively. Also, explosive forming experiments of Al plate were performed and compared to a conventional press forming method. The results confirmed that the shock-loaded Al plate has a larger curvature deformation than those made using conventional press forming. For shock consolidation of powders, the propagation behaviors of a detonation wave and underwater shock wave generated by explosion of an explosive are investigated by means of numerical calculation. The results revealed that the generation and convergence of reflected waves occur at the wall and center position of water column, and also the peak pressure of the converged reflected waves was 20 GPa which exceeds the detonation pressure. As results from the consolidation experiments of metal/ceramic powders ($Fe_{11.2}La_2O_3Co_{0.7}Si_{1.1}$), shock-consolidated $Fe_{11.2}La_2O_3Co_{0.7}Si_{1.1}$ bulk without cracks was successfully obtained by adapting the suggested water container and strong bonding between powder particles was confirmed through microscopic observations.

Development and Evaluation of Predictive Model for Microstructures and Mechanical Material Properties in Heat Affected Zone of Pressure Vessel Steel Weld (압력용기강 용접 열영향부에서의 미세조직 및 기계적 물성 예측절차 개발 및 적용성 평가)

  • Kim, Jong-Sung;Lee, Seung-Gun;Jin, Tae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2399-2408
    • /
    • 2002
  • A prediction procedure has been developed to evaluate the microtructures and material properties of heat affected zone (HAZ) in pressure vessel steel weld, based on temperature analysis, thermodynamics calculation and reaction kinetics model. Temperature distributions in HAE are calculated by finite element method. The microstructures in HAZ are predicted by combining the temperature analysis results with the reaction kinetics model for austenite grain growth and austenite decomposition. Substituting the microstructure prediction results into the previous experimental relations, the mechanical material properties such as hardness, yielding strength and tensile strength are calculated. The prediction procedure is modified and verified by the comparison between the present results and the previous study results for the simulated HAZ in reactor pressure vessel (RPV) circurnferential weld. Finally, the microstructures and mechanical material properties are determined by applying the final procedure to real RPV circumferential weld and the local weak zone in HAZ is evaluated based on the application results.

A Numerical Analysis on the Heat Transfer and Pressure Drop Characteristics of Welding Type Plate Heat Exchangers (용접형 판형열교환기의 열전달 및 압력강하특성에 관한 수치해석)

  • Jeong, Jong-Yun;Nam, Sang-Chul;Kang, Yong-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.9
    • /
    • pp.676-682
    • /
    • 2008
  • Numerical analysis was carried out to examine the heat transfer and pressure drop characteristics of plate heat exchangers for absorption application using Computational Fluid Dynamics(CFD) technique. A commercial CFD software package, FLUENT was used to predict the characteristics of heat transfer, pressure drop and flow distribution within plate heat exchangers. In this paper, a welded plate heat exchanger with the plate of chevron embossing type was numerically analyzed by controlling mass flow rate, solution concentration, and inlet temperatures. The working fluid is $H_2O$/LiBr solution with the LiBr concentration of 50-60% in mass. The numerical simulation shows reasonably good agreement with the experimental results. Also, the numerical results show that plate of the chevron shape gives better results than plate of the elliptical shape from the view points of heat transfer and pressure drop. These results provide a guideline to apply the welded PHE for the solution heat exchanger of absorption systems.

The Evaluation of Tube to Tubesheet Joint Part on Nuclear S/G (원자력 증기발생기 튜브/튜브시트 확관방법별 특성평가)

  • 심상한;배강국;김인수
    • Proceedings of the KWS Conference
    • /
    • 1996.05a
    • /
    • pp.34-37
    • /
    • 1996
  • The expanding method of tube to tubesheet joint part on neclear steam generators are classified into three classes of roller expanding, explosive expanding and hydraulic expanding. After the expanded Mock-Up specimen are made by the three expanding method. The general properties, microstructure/microvickers hardness, pull-out strength, hydraulic leak pressure, of tube to tubesheet joint part were inspected. and We evaluated the operation efficiency of expansion, reproduction of expanded joint about three expanding method. Through the overall evaluation of tube to tubesheet joint part, The hydraukic expanding and explosive expanding could be certificated more useful expanding method.

  • PDF

Electromagnetic Joining of Dissimilar Materials (이종재료의 전자기 결합)

  • 박영배;김헌영;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.33-38
    • /
    • 2002
  • Nowdays, related with vehicle weight reduction, many automotive maker are trying to develop spaceframe. If aluminum member and steel member are applied together in constructing spaceframe, there will be many advantages in aspect of inclosing strength and saving weight of automotive. In this case, joining method of aluminum and steel members has to be proposed. For this method, electomagnetic joining has many advantages compared to welding. In this paper, joining of aluminum tube and steel tube using eletomagnetic pressure was studied and strength of joint was evaluated through commission test.

  • PDF

A study on the Fatigal Crack Grow for SA 516-70 steel at low temperature (SA 516-70 압력용기용 강판의 저온피로 균열 진전 특성에 관한 연구)

  • 박경동;차상수
    • Proceedings of the KWS Conference
    • /
    • 1999.05a
    • /
    • pp.288-291
    • /
    • 1999
  • Fatigue crack propagaion rates and characteristics of the SA516-70 steel which is used for the low temperature pressure vessels, were studied in the room temperature of 1$0^{\circ}C$ and low temperature ranges of -1$0^{\circ}C$, -3$0^{\circ}C$, -5$0^{\circ}C$, -7$0^{\circ}C$ with stress ratio of R=0.05.

  • PDF

The behavior of strength on friction welding of dissimilar steels by various heating time : in case of SM45C and SUS304 materials (이종강의 마찰압접시 압접시간 변화에 따른 강도거동-SM45C와 SUS304재의 경우)

  • 박명과;박명과
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.762-771
    • /
    • 1987
  • Friction welding is a fusion process in which the necessary heat is generated by clamping one of the two pieces to be welded in a stationary chuck and rotating the other at high speed with an axially applied load. It is essentially a variation of the pressure welding process but utilizes a novel heating method. In addition to the foregoing advantages, it has also been reported excellent for welding dissimilar materials. Therefore, this study reported on investigating the strength behavior for the frictionally welded domestic structural steel SM45C and SUS304. The results obtained by the experiments are as follows. (1) The highest tensile strength of the best friction welded specimen (B4) is about 3% lower than that of SM-45C base metal, and 9% lower than that of SUS304 base metal. The heat treated specimens (850.deg.C 1hr A.C) have almost same value of tensile strength. (2) The strain of SM45C base metal is 27.3% and that of SUS304 is 42%, that of the best friction welded specimen (B4) appeared as 11.9% which is about 50% lower than the base metal, so, this same phenomenon apeared in all the other welding conditions. (3) The bending strength of SM45C base metal is 123kgf/mm$^{2}$ and that of SUS304 is 127kgf/mm$^{2}$. The best specimen (B4) appeared as 121kgf/mm$^{2}$ which is almost same bending strength for both base metals. (4) The friction welded condition involving maximum strength is determined by P$_{1}$=8kgf/mm$_{2}$, P$_{2}$=22kgf/mm$_{2}$, T$_{1}$=10sec, T$_{2}$=2sec, and amount of upset 7.6mm. (5) The interface of two dissimilar materials are mixed strongly, and welded zone is about 1.03mm and also the heat affected zone is about 2.36mm at SM45C while about 1.85mm at SUS304, therefore the welded zone and heat affected zone are very narrow to compare with those of the other welding materials.