• Title/Summary/Keyword: Welding machine

Search Result 457, Processing Time 0.025 seconds

The Effect of Aging Treatment on the High Temperature Fatigue Fracture Behavior of Friction Welded Domestic Heat Resisting Steels (SUH3-SUS 303) (마찰용접된 국산내열 강 (SUH3-SUS303 )의 시효열처리가 고온피로강도 및 파괴거동에 미치는 영향에 관한 연구)

  • Lee, Kyu-Yong;Oh, Sae-Kyoo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.17 no.2
    • /
    • pp.93-103
    • /
    • 1981
  • It is well-known that nowadays heat resisting and anti-corrosive materials have been widely used as the components materials of gas turbines, nuclear power plants and engines etc. In the fields of machine production industry. And materials for engine components, like as the exhaust valve of internal combustion engine, have been required to operate under the high temperature range of $700^{\circ}C$-$800^{\circ}C$ and high pressured gas with repeated mechanical load for the high performance of engines. For these components, friction welding for bonding of dissimilar steels can be applied for in order to obtain process shortening, production cost reduction and excellent bonding quality. And age hardening recently has been noticed to the heat resisting materials for further strengthening of high temperature strength, especially high temperature fatigue strength. However, it is difficult to find out any report concerning the effects of age hardening for strengthening high temperature fatigue strength to the Friction welded heat resisting and anti-corrosive materials. In this study the experiment was carried out as the high temperature rotary bending fatigue testing under the condition of $700^{\circ}C$ high temperature to the friction welded domestic heat resisting steels, SUH3-SUS303, which were 10hr., 100hr. aging heat treated at $700^{\circ}C$ after solution treatment 1hr. at $1, 060^{\circ}C$ for the purpose of observing the effects of the high temperature fatigue strength and fatigue fracture behaviors as well as with various mechanical properties of welded joints. The results obtained are summarized as follows: 1) Through mechanical tests and micro-structural examinations, the determined optimum welding conditions, rotating speed 2420 rpm, heating pressure 8kg/mm super(2), upsetting pressure 22kg/mm super(2), the amount of total upset 7mm (heating time 3 sec and upsetting time 2 sec) were satisfied. 2) The solution treated material SUH 3, SUS 303, have the highest inclination gradient on S-N curve due to the high temperature fatigue testing for long time at $700^{\circ}C$. 3) The optimum aging time of friction welded SUH3-SUS 303, has been recognized near the 10hr. at $700^{\circ}C$ after the solution treatment of 1hr. at $1, 060^{\circ}C$. 4) The high temperature fatigue limits of aging treated materials were compared with those of raw material according to the extender of aging time, on 10hr. aging, fatigue limits were increased by SUH 3 75.4%, SUS 303 28.5%, friction welded joints SUH 3-SUS 303 44.2% and 100hr. aging the rates were 64.9%, 30.4% and 36.6% respectively. 5) The fatigue fractures occurred at the side of the base matal SUS303 of the friction welded joints SUH 3-SUS 303 and it is difficult to find out fractures at the friction welding interfaces. 6) The cracking mode of SUS 303, SUH 3-303 is intergranular in any case, but SUH 3 is fractured by transgranular cracking.

  • PDF

A study on the laser surface hardening of SM 45C steel (SM 45C강의 레이저 표면경화처리에 관한 연구)

  • 나석주;김성도;이건이;김태균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.53-62
    • /
    • 1987
  • High power lasers provide a controllable and precise energy source in surface transformation hardening. A careful control of the process is needed in order that the surface layer of the material reaches the austenizing temperature, but that it does not melt. In order to achieve this the results of theoretical and experimental studies on the laser surface hardening of a medium carbon steel are described. A two-dimensional computer program, which can be used generally for the determination of transient temperature distributions in welding and heat treatment, was established on the basis of the finite element method. For the confirmation of the accuracy of the numerical analysis, a medium carbon steel (SM 45C) of 5mm thickness was heat-treated with a 1kW CW CO$_{2}$ laser machine, while the traverse speed and the distance from the focal point (defocused distance) were varied. Experimental and numerical results showed a similar tendency in correlations between the hardened zone shape and the process parameters. With increasing beam spot diameter the width and depth of the hardened zone increased for relatively small beam spot diameters, but decreased rapidly after reaching the maximum value, while with increasing traverse speed the width and depth of the hardened zone decreased monotonously. Too small beam spot diameters are to be avoided, since the surface melting would lower the surface hardness and produce an uneven surface which may be unacceptable because of the possible requirement for subsequent machining. It could be observed that for a given traverse speed and laser power input there exists a optimal range of the beam spot diameter, which produce a large width of the hardened zone but no melting on the surface.

Experimental Study on Steel Beam with Embossment Web (엠보싱 웨브를 가지는 보 부재의 실험적 연구)

  • Park, Han-Min;Lee, Hee-Du;Shin, Kyung-Jae;Lee, Swoo-Heon;Chae, Il Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.6
    • /
    • pp.479-486
    • /
    • 2017
  • Steel beams with corrugated web have been widely used in the steel structures. However, it is challenging to weld the section between the corrugated web and the flange straight, which increases the cost of production. In order to solve this issue, steel beam with intaglio and embossed web (It is called an IEB) was invented. A web with embossment is produced by cold pressing and welded to flange by automatic welding machine. The loading tests were conducted to investigate the load-carrying capacity of IEB, and its test result was compared with that of H-shaped beam having a same size of flange and web. The test results of IEB series showed about 40% higher load capacities than H-shaped series. As a result of comparing the IEB specimen with Eurocodes for steel beams with corrugated web, all of specimens tested in this study did not meet the design value. Therefore, it is difficult to apply existing formula to IEB and new design formula should be presented for field application.

The Development of Height Adjustable Steel Manhole cover (높이조절이 가능한 강재 맨홀뚜껑의 개발)

  • Park, Woo-Cheul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.581-586
    • /
    • 2018
  • Cast iron manhole lids cause environmental pollution during the manufacturing process, and the work environment is very poor. In addition, if the height of the manhole cover does not match the height of the road surface, it causes considerable inconvenience and safety problems. This study proposes a height - adjustable steel manhole cover that can replace cast iron manhole covers and easily match the road surface with the upper surface of the manhole cover. Structural analysis was performed to grasp the design variable of the structure of the manhole cover, satisfying the required quality performance. To fabricate a manhole cover that satisfies the required load capacity, the optimal design for the U-shaped reinforcement structure was made. The cylindrical shape of the height adjustment part and the low frame were formed by bending the steel sheet into a circular shape and then welding. Reinforcing bars were also made by bending a steel plate. The height adjustment groove was machined by a CNC milling machine. Four prototypes were fabricated and a load bearing test was carried out, and new manhole cover was made reflecting results of the test. In the load bearing test, there was no breakage of the welded part, and deformation occurred mainly at the contact area between the groove and gusset plate. Deformation of 1 to 2.7mm occurred due to a load of 450kN. On the other hand, after removing the load, there was almost no residual deformation, and the load bearing evaluation was judged to be satisfactory because the manhole cover could be disassembled and reassembled.

Experimental Evaluation of Seismic Column Splice with Partial Joint Penetration Welds (부분용입용접 내진기둥 이음부의 강도평가)

  • Lee, Cheol Ho;Kim, Jae Hoon;Kim, Jung Jae;Oh, Sang Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.817-827
    • /
    • 2008
  • The seismic performance of a column splice fabricated with PJP (partial joint penetration) welds for special moment frames was experimentally evaluated in this study. The steel materials that were used for the specimens included SHN490 and SN490 steel, or the newly developed structural steel for seismic application. Fabricating the column splice with PJP welds is highly attractive from the perspective of reducing the welding cost and the construction time. PJP welds in column splices are viewed apprehensively, however, because several tests have shown that PJP welds in thick members tend to become brittle under tensile loads. The column splices in this testing program were designed for the expected plastic moment of the column that current seismic codes typically require. The design strength of partial-penetration welded joints was determined according to the 2005 AISC-LRFD Specification. Three-point loading was applied monotonically, using a universal testing machine, such thatthe column splice joints were subjected to pure tension. The test results showed that the PJP welded splices, if designed properly, can develop a strength exceeding that of the actual plastic moment of the column. The specimen made of the SM490 rolled section, however, showed a brittle fracture at the splice soon after achieving the actual plastic moment of the column. The tensile coupon test results also showed that the material properties of SM490 steel are more unpredictable. Overall, although the test data are limited, the SHN490 and SN490 steel specimens showed a superior and reliable performance.

Vibration Characteristics of a Wire-Bonding Ultrasonic Horn (와이어 본딩용 초음파 혼의 진동 특성)

  • Kim, Young Woo;Yim, Vit;Han, Daewoong;Lee, Seung-Yop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.227-233
    • /
    • 2014
  • This study investigates the vibration characteristics of a wire-bonding piezoelectric transducer and ultrasonic horn for high-speed and precise welding. A ring-type piezoelectric stack actuator is excited at 136 kHz to vibrate a conical-type horn and capillary system. The nodal lines and amplification ratio of the ultrasonic horn are obtained using a theoretical analysis and FEM simulation. The vibration modes and frequencies close to the driving frequency are identified to evaluate the bonding performance of the current wire-bonder system. The FEM and experimental results show that the current wire-bonder system uses the bending mode of 136 kHz as the principal motion for bonding and that the transverse vibration of the capillary causes the bonding failure. Because the major longitudinal mode exists at 119 kHz, it is recommended that the design of the current wire-bonding system be modified to use the major longitudinal mode at the excitation frequency and to minimize the transverse vibration of capillary in order to improve the bonding performance.

Necessity to incorporate XR-based Training Contents Focused on Cable pulling using Winches in the Shipbuilding (윈치를 활용한 케이블 포설을 중심으로 고찰한 XR 기반 훈련 콘텐츠 도입의 필요성)

  • JongMin Lee;JongSeong Kim
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.6
    • /
    • pp.53-62
    • /
    • 2023
  • This paper has suggested the necessity of introducing training contents using XR(Extended reality) technology as a way to lower the high rate of nursing accidents among unskilled technical personnel in domestic shipbuilding industry, focusing on cable pulling using winch. The occurrence rate of nursing accidents in the domestic shipbuilding industry was almost double(197.4%) (2017~2020) when compared with other manufacturing industries. In particular, it is worth noting that more than 31.8% of nursing accidents in the shipbuilding industry occurred among workers whose job experience is no more than 6 months. Most of new workers are seen to have hard time due to several factors such as lack of work information, inexperience, and unfamiliarity with the working environments. This indicates that it is essential to incorporate more effective training method that could help new workers become familiar with technical skills as well as working environments in a short period of time. Currently, education/training at the domestic shipyard is biased toward technical skills such as welding, painting, machine installation, and electrical installation. Contrary, even more important training required to get new workers used to the working environment has remained at a superficial level such as explaining ship building processes using 2D drawings. This may be the reason why it is inevitable to repeat similar training at OJT (On-the-Job Training) even at the leading domestic companies. Domestic shipbuilding industries have been attracting a lot of new workers thanks to recent economic recovery, which is very likely to increase the occurrence of disasters. In this paper, the introduction of training using XR technology was proposed, and as a specific example, the process of pulling cables using winches on ships was implemented as XR-based training content by using Unity. Using the developed content, it demonstrated that new workers can experience the actual work process in advance through simulation in a virtual space, thereby becoming more effective training content that can help new workers become familiar with the work environment.