• 제목/요약/키워드: Welding engineering

검색결과 2,711건 처리시간 0.025초

Residual Stress and Fracture Analysis of Thick Plate for Partial Penetration Multi-Pass Weldment

  • Kim, Seok;Shim, Yong-Lae;Song, Jung-Il
    • Journal of Mechanical Science and Technology
    • /
    • 제16권9호
    • /
    • pp.1033-1039
    • /
    • 2002
  • Partial penetration welding joint refers to the groove weld that applies to the one side welding which does not use steel backing and to both side welding without back gouging, that is, the partial penetration welding joint leaves an unwelded portion at the root of the welding area. In this study, we analyzed the residual stress and fracture on the thick metal plates that introduced the partial penetration welding method. According to the above-mentioned welding method, we could draw a conclusion that longitudinal stress and traverse stress occurred around the welding area are so minimal and do not affect any influence. We also performed the fracture behavior evaluation on the partial penetration multi pass welding with 25.4 mm thick plate by using the J-integral, which finally led us the conclusion that the partial penetration multi-pass welding method is more applicable and effective in handling the root face with less than 6.35 mm.

CW Nd:YAG 레이저에 의한 SCP1의 용접특성 (Welding Characteristics of SCP1 on CW Nd:Yag Laser)

  • 신병헌;유영태;신호준;윤철중
    • 한국정밀공학회지
    • /
    • 제24권5호
    • /
    • pp.35-43
    • /
    • 2007
  • Laser welding of metals has been widely used to improve a wear resistance and a corrosion resistance of the industrial parts. The objective of this research works is to investigate the influence of the process parameters, such as the welding for metals with CW Nd:YAG lasers. The bead-on-plate welding tests are carried out for several combinations of the experimental conditions. In order to quantitatively examine the characteristics of the butt welding, the welding quality of the cut section, stain-stress behavior and the hardness of the welded part are investigated. From the results of the investigation, it has been shown that the optimal welding condition without defects in the vicinity of the welded area and with a good welding quality is 1325W of the laser power, and 1.4m/min of laser welding speed.

탄뎀 가스메탈아크 용접의 토치 극간거리에 관한 실험적 연구 (A Experiment Study of Torch Distance on Automated Tandem GMA Welding System)

  • 이지혜;김일수;정성명;이종표;김영수;박민호
    • Journal of Welding and Joining
    • /
    • 제30권6호
    • /
    • pp.49-55
    • /
    • 2012
  • The tandem welding process is one of the most efficient welding processes widely used in material joining technique such as manufacturing of strong and durable structures. It facilitates high rate of joint filling with little increase in the overall rate of heat input due to the simultaneous deposition from two electrode wires. The two electrodes in tandem welding process helps in high-efficiency and high productive of welding process. In this study a automated tandem welding system is developed to determine the correlation between cathode and anode and compared with current ratio of the two electrode torch. Three different inter-electrode distances were chosen, 25mm, 35mm and 45mm to perform the experiment with three different current ratio. From the experiment results, the current ratio between two torch has a large impact on width, height and depth of penetration. In addition, a stable bead geometry is obtained when inter-electrode distance is 35mm.

내로우 갭 적용을 위한 핫와이어 송급 레이저용접 - 고속촬영을 통한 와이어 용융/이행 현상과 아크 포메이션 분석 - (Hot Wire Laser Welding of Multilayer for Narrow Gap - Analysis of Wire Melting/Transfer and Arc Formation Phenomenon by High Speed Imaging -)

  • 김경학;방한서;방희선
    • Journal of Welding and Joining
    • /
    • 제34권5호
    • /
    • pp.26-32
    • /
    • 2016
  • In this study, Hot-wire laser welding (HWLW) without keyhole which deposits filler material by feeding hot wire into the process zone has been performed to increase process performance. From the analysis of High Speed Imaging (HSI), for higher voltage, the process is prone to arc formation and drop transfer, which is disagreeable transfer mode. It is necessary that arc formation and drop (globular) transfer should be avoided by lower voltage. Therefore, continuous wire melting and transfer mode is preferred when adopting this process. The HWLW technique has high potential in terms of performance, precision, robustness and controllability for thick section of narrow gap.

조선용 A-grade 강재에 대한 하이브리드 및 레이저 용접부의 용접성 비교 (The Comparison of Weldability in Hybrid & Laser Welded Ship Structure A-grade Steel)

  • 오종인;박호경;정은영;;방한서
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.193-196
    • /
    • 2006
  • Recently many research are going on in the field of application of Laser and Laser-Arc hybrid welding for superstructures such as ship-structures, transport vehicles etc. Therefore in this study an optimized welding condition and numerical simulation for hybrid welding by using previous numerical analysis which is used to calculate the heat source for Laser and Laser-Arc hybrid welding has been analyzed. For this purpose, fundamental welding phenomena of hybrid process(Laser+MIG) are determined based on the experiments. In order to calculate temperature and residual stress distribution in Laser and Laser-Arc hybrid welds, finite element heat source model is developed on the basis of experiment results and characteristics of temperature and residual stress distribution in Laser and Laser-Arc hybrid welds are understood from the result of simulation and found comparable to the experimental values.

  • PDF

선박용 이종 알루미늄 합금 미그 용접부의 기계적 및 전기화학적 특성 평가 (Evaluation of Electrochemical and Mechanical Characteristics in MIG Welding Parts of Dissimilar Al Alloys for Ship)

  • 우용빈;김성종
    • 한국표면공학회지
    • /
    • 제42권1호
    • /
    • pp.34-40
    • /
    • 2009
  • In the study, it was carried out dissimilar metal welding on materials for Al ship. The electrochemical and mechanical characteristics evaluated for specimen welded by ROBOT. The hardness of welding zone is lower than those of heat affected zone and base metal. At the result of tensile test, the specimen welded with ER5183 welding material presented excellent property compared with ER5556. The polarization trend for the base metal and welding metal showed the effects of concentration polarization due to oxygen reduction and activation polarization due to hydrogen generation. At the Tafel experiments result, the corrosion density in welded with ER5183 welding material presented the lowest value.

Al 5052 합금의 저입열 Pulse MIG 최적 현장 용접조건 산정에 관한 실험적 연구 (Study on the Optimization Field Welding Conditions of Low Heat-Input Pluse MIG Welding Process for 5052 Aluminum Alloy Sheets)

  • 김재성;이영기;안주선;이보영
    • Journal of Welding and Joining
    • /
    • 제29권1호
    • /
    • pp.80-84
    • /
    • 2011
  • The weight reduction of the transportations has become an important technical subject Al and Al alloys, especially Al 5052 alloys have been being applied as door materials for automobile. One of the most widely known car weight-reduction methods is to use light and corrosion-resistant aluminum alloys. However, because of high electrical and thermal conductivity and a low melting point, it is difficult to obtain good weld quality when working with the aluminum alloys. Also, Pulse MIG welding is the typical aluminum welding process, but it is difficult to apply to the thin plate, because of melt-through and humping-bead. In order to enhance weld quality, welding parameters should be considered in optimizing the welding process. In this experiment, Al 5052 sheets were used as specimens, and these materials were welded by adopting new Cold Metal Transfer (CMT) pulse process. The proper welding conditions such as welding current, welding speed, torch angle $50^{\circ}$ and gap 0~1mm are determined by tensile test and bead shape. Through this study, range of welding current are confirmed from 100A to 120A. And, the range of welding speed is confirmed from 1.2m/min to 1.5m/min.

OPTIMIZATION OF WELDING PARAMETERS FOR RESISTANCE SPOT WELDING OF TRIP STEEL USING RESPONSE SURFACE METHODOLOGY

  • Park, Hyunsung;Kim, Taehyung;Sehun Rhee
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.366-371
    • /
    • 2002
  • Because of the environmental problems, automotive companies are trying to reduce the weight of car body. Therefore, TRIP(TRansformation Induced Plasticity) steels, which have high strength and ductility have been developed. Welding process is a complex process; therefore deciding the optimal welding conditions on the basis of experimental data is an effective method. However, trial-and-error method to decide the optimal conditions requires too many experiments. To overcome these problems, response surface methodology was used. Response surface methodology is a collection of mathematical and statistical techniques that are used in the modeling and analysis of problems in which a response of interest is influenced by several variables and the objective is to optimize this response. This method was applied to the resistance spot welding process of the TRIP steel to optimize the welding parameters.

  • PDF

Stress Intensity Factor for the Cracked Plate Reinforce with a Plate by Seam Welding

  • Kim, O.W.;Park, S.D.;Lee, Y.H.
    • International Journal of Korean Welding Society
    • /
    • 제1권2호
    • /
    • pp.18-22
    • /
    • 2001
  • The stress intensity factor has been calculated theoretically for the cracked plate subjected to remote normal stress and reinforced with a plate by symmetric seam welding. The singular integral equation was derived based on displacement compatibility condition between the cracked plate and the reinforcement plate, and solved by means of Erdogan and Gupta's method. The results from the derived equation for stress intensity factor were compared with FEM solutions and seems to be reasonable. The reinforcement effect gets better as welding line is closer to the crack and the stiffness ratio of the cracked plate and the reinforcement plate becomes larger.

  • PDF

Distribution of Welding Residual Stresses in Laser Welds with the Nail-head shape

  • Kim, Y.P.;Joo, S.M.;Bang, H.S.
    • International Journal of Korean Welding Society
    • /
    • 제3권1호
    • /
    • pp.17-22
    • /
    • 2003
  • During the laser welding, weldments are suddenly heated and cooled by laser beam of high density energy. This phenomenon gives an occasion to complex welding residual stresses, which have a great influence on structural instability, in laser welds. However, relevant researches on this field are not sufficient until now and residual stress measurements have experimental and practical limitations. From these reasons, a numerical simulation may be attractive in order to solve the residual stress problem. For clarifying the distribution of heat and welding residual stresses in laser welds with the nail-head shape, authors conduct the finite element analysis (two-dimensional unstationary heat conduction & thermal elastic and plastic analysis). From the results, we can confirm the stress concentration occurs at the place of melting line shape changed in laser welds with the nail-head shape.

  • PDF