• Title/Summary/Keyword: Welding Properties

Search Result 1,272, Processing Time 0.029 seconds

Weldability of Pure Titanium Thin plate for LPG Re-Condenser by Nd:YAG Laser - Physical Constant and Welding Parameter - (LPG 재응축기용 순티타늄 박판의 Nd:YAG 레이저 용접성(I) - 순티타늄의 물성과 용접변수 -)

  • Kim, Jong-Do;Gwak, Myeong-Seop;Lee, Chang-Je;Kim, Chang-Su
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.363-365
    • /
    • 2007
  • Titanium and its alloys have excellent corrosion resistance, high strength to weight ratios and high temperature creep properties, which make them using many various fields of application. Responding to these needs, welding processes for titanium are also being used including TIG, MIG, resistance welding, plasma arc welding, diffusion welding, electron beam welding and laser welding. In this study, It is possible to get sound beads without humping bead and spatter with the decrease of peak power according to increase of pulse width and change of welding speed for heat input control at pulsed Nd:YAG laser welding of titanium plates for Lap welding.

  • PDF

A study on the cold pressure welding of dissimilar metals (이종금속의 상온압접에 관한 연구)

  • 엄기원;이철구
    • Journal of Welding and Joining
    • /
    • v.5 no.3
    • /
    • pp.19-27
    • /
    • 1987
  • This paper presents the weldability for cold pressure but welding method in junction of dissimilar metals each other. Although the weldability between the same aluminium metal plate welding has been studied, the study of itthe rod of aluminium and coper has not fully been investigated. The purpose is to suggest the optimal conditions on the rod of those under above method. To obtain the optimal conditions, associated experiments were performed in a various welding parameters. Consequently, it was proved that the mechanical properties such as tensile strength, hardness and bending strength could be obtained excellent particularly under the welding conditions; pressure is $(32~39) {\times} 10^3/kg/cm^2$, time is beyond 70 seconds, stage is higher than fifth stage.

  • PDF

Comparison of Mechanical Properties and Microstructural Charateristies of Tandem GMAW Weld Metal in 490MPa Grade Steel (490MPa급 고장력강 탄뎀 가스메탈아크 용접부에 대한 기계적 성질과 미세조직 비교)

  • Yi, Hui-Jun;Kang, Sung-Soo;Yu, Gum-Bin;Bae, Won-Hak;Moon, Hyun-Soo
    • Journal of Welding and Joining
    • /
    • v.27 no.2
    • /
    • pp.76-81
    • /
    • 2009
  • Tandem GMAW is one of the high performance welding process and used in many industries to increase the productivity. An evaluation is presented of the mechanical properties and microstructural characteristics of the Tandem GMAW and conventional Single GMAW welds in 30mm thickness 490MPa grade steel by comparison method. Welding sequence and bead with and hight was kept, avoiding the effect of the bead shape and welding sequence. Tension, bending, hardness and Charpy impact test results of Tandem GMAW met the requirement of specification and showed similar distribution with conventional Single GMAW. Volume fraction of ferrite phase in weld metal showed little difference between Tandem GMAW and Single GMAW

Characteristic study of mechanical properties of Structural rolled steel and Stainless steel for MIG welding (구조용 압연강재와 스테인리스 강재의 MIG 용접에 대한 기계적 특성연구)

  • Lim, J.Y.;Yoon, M.J.;Kim, S.Y.;Kim, T.G.
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.1
    • /
    • pp.100-106
    • /
    • 2014
  • It is well known that fatigue failures occur on welded structures in industrial application due to repetitive load force. In order to decrease the incidence of fatigue failure, we analyzed the mechanical properties based on structural aspects in rolled steel(SS 400) welded onto stainless steel (STS 304) by the MIG welding method as well as the structure of rolled steel welded onto itself. We compared the hardness, tensile and fatigue properties with two types of samples which had no defects on the welding parts as observed by X-ray topographic analysis. It was found that the tensile and fatigue strength levels of SS 400 welded onto STS 304 by the MIG welding method were higher than those of STS 304 welded onto itself.

N.M.for the Effect of P.T. on Resicual Stress Relaxation (잔류응력 완화에 미치는 상변태의 수치적 모델링)

  • 장경복;손금렬;강성수
    • Journal of Welding and Joining
    • /
    • v.17 no.6
    • /
    • pp.84-89
    • /
    • 1999
  • Most of ferrous b.c.c weld materials may experience martensitic transformation during rapid cooling after welding. It is well known that volume expansion due to the phase transformation could influence on the relaxation of welding residual stress. To apply this effect practically, it is a prerequisite to establish a numerical model which is able to estimate the effect of phase transformation on residual stress relaxation quantitatively. For this purpose, the analysis is carried out in two regions. i.e., heating and cooling, because the variation of material properties following a phase transformation in cooling is different in comparison with the case in heating, even at the same temperature. The variation of material properties following phase transformation is considered by the adjustment of specific heat and thermal expansion coefficient, and the distribution of residual stress in analysis is compared with that of experiment by previous study. consequently, in this study, simplified numerical procedures considering phase transformation, which based on a commercial finite element package was established through comparing with the experimental data of residual stress distribution by other researcher. To consider the phase transformation effect on residual stress relaxation, the transition of mechanical and thermal property such as thermal expansion coefficient and specific heat capacity was found by try and error method in this analysis.

  • PDF

The Effects of δ-ferrite on Weldment of 9-12% Cr Steels (9-12% Cr강의 용접부에 미치는 δ-ferrite의 영향)

  • Ahn, Sung-Yong;Kang, Namhyun
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.8-16
    • /
    • 2013
  • As the energy consumption increases rapidly, power generation needs the high energy efficiency continuously. To achieve the high efficiency of power generation, the materials used have to endure the higher temperature and pressure. The 9-12%Cr steels possess good mechanical properties, corrosion resistance, and creep strength in high temperature due to high Cr contents. Therefore, the 9-12%Cr steels are widely used for the high-temperature components in power plants. Even though the steels usually have a fully martensitic microstructure, they are susceptible to the formation of ${\delta}$-ferrite specifically during the welding process. The formation of ${\delta}$-ferrite has several detrimental effects on creep, ductility and toughness. Therefore, it is necessary to avoid its formation. As the volume fraction of ${\delta}$-ferrite is less than 2% in microstructure, it has the isolated island morphology and causes no significant degradation on mechanical properties. For ${\delta}$-ferrite above 2%, it has a polygonal shape affecting the detrimental influence on the mechanical properties. The formation of ${\delta}$-ferrite is affected by two factors: a chemical composition and a welding heat input. The most effective ways to get a fully martensite microstructure are to reduce the chromium equivalent less than 13.5, to keep the difference between the chromium and nickel equivalent less than 8, and to reduce the welding heat input.

Evaluation of the Friction Welding Properties on SUS304 Alloy (SUS304합금의 마찰접합특성 평가)

  • Y. -K. Kim;K. -H. Song;J. -K. Chung;T. -K. Ha
    • Transactions of Materials Processing
    • /
    • v.33 no.3
    • /
    • pp.193-199
    • /
    • 2024
  • The friction welding characteristics of stainless steels, mainly used in energy and chemical plant industries due to its excellent corrosion resistance and high strength, was evaluated in this study. Friction welding was introduced and conducted at a rotation speed of 2,000 RPM, friction pressure of 30 MPa, burn-off length of 5 mm and upset pressure of 110 ~ 200 MPa on rod typed specimens. The grain boundary characteristics distributions such a grain size, shape, misorientation angle and kernel average misorientation of the welds were clarified by electron backscattering diffraction method. The application of friction welding on SUS304 alloy resulted in a significant refinement of the grain size in the weld zone (5.11 mm) compared to that of the base material (48.09 mm). The mechanical properties of the welds, on the other hand, appeared to be relatively low or similar to those of the base material, which were mainly caused by dislocation density in the initial material and grain refinement in the welds.

Influence of Welding Parameters on Macrostructure and Mechanical Properties of Friction-Stir-Spot-Welded 5454-O Aluminum Alloy Sheets (마찰교반점접합한 5454-O 알루미늄합금 판재의 접합부 거시조직 및 기계적 특성에 미치는 접합인자의 영향)

  • Choi, Won-Ho;Kwon, Yong-Jai;Yoon, Sung-Ook;Kang, Myoung-Soo;Lim, Chang-Yong;Seo, Jong-Dock;Hong, Sung-Tae;Park, Dong-Hwan;Lee, Kwang-Hak
    • Journal of Welding and Joining
    • /
    • v.29 no.6
    • /
    • pp.56-64
    • /
    • 2011
  • Friction stir spot welding between 5454 aluminum alloy sheets with the different thicknesses of 1.4 and 1.0 mm was performed. In the welding process, the tool for welding was rotated ranging from 500 to 2500, and plunged to the depth of 1.8 mm under a constant tool plunge speed of 100 mm/min. And then, the rotating tool was maintained at the plunge depth during the dwell time ranging from 0 to 7 sec. The pull-out speed of the rotating tool was 100 mm/min. The increase of tool rotation speed resulted in the change of the macrostructure of friction-stir-spot-welded zone, especially the geometry of welding interface. The results of the tensile shear test showed that the total displacement and toughness of the welds were increased with the increase of the tool rotation speed, although the maximum tensile shear load was decreased. However, the change in the dwell time at the plunge depth of the tool did not produce the remarkable variation in the macrostructure and mechanical properties of the welds. In all cases, the average hardness in friction-stir-spot-welded zone was higher than that of the base metal zone. By the friction stir spot welding technique, the welds with the excellent mechanical properties than the mechanically-clinched joints could be obtained.

A Study of Process Parameters Optimization Using Genetic Algorithm for Nd:YAG Laser Welding of AA5182 Aluminum Alloy Sheet (AA5182 알루미늄 판재의 Nd:YAG 레이저 용접에서 유전 알고리즘을 이용한 공정변수 최적화에 대한 연구)

  • Park, Young-Whan;Rhee, Se-Hun;Park, Hyun-Sung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1322-1327
    • /
    • 2007
  • Many automotive companies have tried to apply the aluminum alloy sheet to car body because reducing the car weight can improve the fuel efficiency of vehicle. In order to do that, sheet materials require of weldablity, formability, productivity and so on. Aluminum alloy was not easy to join these metals due to its material properties. Thus, the laser is good heat source for aluminum alloy welding because of its high heat intensity. However, the welding quality was not good by porosity, underfill, and magnesium loss in welded metal for AA5182 aluminum alloy. In this study, Nd:YAG laser welding of AA 5182 with filler wire AA 5356 was carried out to overcome this problem. The weldability of AA5182 laser welding with AA5356 filler wire was investigated in terms of tensile strength and Erichsen ratio. For full penetration, mechanical properties were improved by filler wire. In order to optimize the process parameters, model to estimate tensile strength by artificial neural network was developed and fitness function was defined in consideration of weldability and productivity. Genetic algorithm was used to search the optimal point of laser power, welding speed, and wire feed rate.

  • PDF

Fatigue Assessment of Reactor Vessel Outlet Nozzle Weld Considering the LBZ and Welding Residual Stress Effect (국부 취화부와 용접 잔류응력 효과를 고려한 원자로 출구노즐 용접부의 피로강도 평가)

  • Lee, Se-Hwan
    • Journal of Welding and Joining
    • /
    • v.24 no.2
    • /
    • pp.48-56
    • /
    • 2006
  • The fatigue strength of the welds is affected by such factors as the weld geometry, microstructures, tensile properties and residual stresses caused by fabrication. It is very important to evaluate the structural integrity of the welds in nuclear power plant because the weldment undergoes the most of damage and failure mechanisms. In this study, the fatigue assessments for a reactor vessel outlet nozzle with the weldment to the piping system are performed considering the welding residual stresses as well as the effect of local brittle zone in the vicinity of the weld fusion line. The analytical approaches employed are the microstructure and mechanical properties prediction by semi-analytical method, the thermal and stress analysis including the welding residual stress analysis by finite element method, the fatigue life assessment by following the ASME Code rules. The calculated results of cumulative usage factors(CUF) are compared for cases of the elastic and elasto-plastic analysis, and with or without residual stress and local brittle zone effects, respectively. Finally, the fatigue life of reactor vessel outlet nozzle weld is slightly affected by the local brittle zone and welding residual stresses.