• Title/Summary/Keyword: Welding Material

Search Result 1,143, Processing Time 0.025 seconds

Measurement of Mmechanical Properties in Weld Zone of Nuclear Material using an Instrumented Indentation Technique (계장형 압입시험법에 의한 원자력 구조재료 용접 물성치 측정)

  • Song, Kee-Nam;Ro, Dong-Seong
    • Journal of Welding and Joining
    • /
    • v.30 no.3
    • /
    • pp.51-56
    • /
    • 2012
  • Different microstructures in the weld zone of a metal structure including a fusion zone and heat affected zone are formed as compared to the base material. Thus, the mechanical properties in the weld zone are different from those in the base material. As the basic data for reliably understanding the structural characteristics of welded nuclear material, the mechanical properties in the weld zone and base material for a Zircaloy-4 strap and Hastelloy${(R)}$-X alloy strap are measured using an instrumented indentation technique (IIT) in this study.

An Electrochemical Evaluation on the Corrosion of Weld Zone in Cold Arc Welding of the Cast Iron

  • Moon, Kyung Man;Kim, Jin Gyeong;Lee, Myung Hoon;Kim, Ki Joon
    • Corrosion Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.134-137
    • /
    • 2008
  • Cold arc welding of cast iron has been widely used with repair welding of metal structures. However its welding is often resulted in the galvanic corrosion between weld metal zone and heat affected zone(HAZ) due to increasing of hardness. In this study, corrosion properties such as hardness, corrosion potential, surface microstructures, and variation of corrosion current density of welding zone with parameters of used electrodes for cast iron welding were investigated with an electrochemical evaluation. Hardness of HAZ showed the highest value compared to other welding zone regardless of kinds of used electrodes for cast iron welding. And its corrosion potential was also shifted to more negative direction than other welding zone. In addition, corrosion current density of WM in polarization curves was qualitatively smaller than that of HAZ. Therefore galvanic corrosion may be apparently observed at HAZ. However galvanic corrosion may be somewhat controlled by using an optimum welding electrode.

Analysis of Welding Distortion during the Production of Fuel Tanks for Excavators (연료탱크 제작시 시뮬레이션을 통한 용접변형 해석)

  • Yang, Young-Soo;Kim, Duck-Youn;Bae, Kang-Yul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.6
    • /
    • pp.24-34
    • /
    • 2016
  • To attach a fuel tank to an excavator, two sets of mounting plates on which three bosses are attached are welded onto the tank. In this study, the welding process of a fuel tank for an excavator was modeled using a finite element numerical method. The tank was modeled as a simple plate to which the mounting plate or bosses were attached by fillet welding. Thermal and thermo-elasto-plastic analyses of the welding process were carried out to predict the temperature distribution and material distortion during welding, respectively. Three different welding sequences for the tank were also modelled to compare the deformation that occurred due to each welding sequence. The results of the analysis predicted that changing the welding sequence around the mounting plate could not position the boss within the allowable dimensional range. The results also revealed the sequence in which the maximum distortion of the bosses welded onto the tank was 30% less than the maximum distortion due to the other sequences.

A Study on the Mechanical Behavior of Resistance Spot Welding by Finite Element Method (유한요소법에 의한 저항 점용접부의 역학적 특성에 관한 연구)

  • 방한서;주성민;방희선;차용훈;최병기
    • Journal of Welding and Joining
    • /
    • v.17 no.5
    • /
    • pp.77-82
    • /
    • 1999
  • Resistance spot welding process is completed in very short time and there are many factors affecting on the generation of heat. It is difficult to control these experimental factors and monitor distribution of the temperature and stresses in the experimental analysis case. and too much time and expense are required for the experimental trials to fine proper welding condition. So numerical analyses have been attempted steadily, but most numerical analyses on the resistance spot welding are mainly focused on thermal behavior. Therefore, in this paper, the numerical analysis of mechanical behavior as well as heat conduction is carried out for the spot welding process. For this numerical analysis, axial symmetric computer program for the spot welding analysis by F.E.M. has been developed considering heat conduction and thermal elastic-plastic theory. Material properties depending on temperature such as density, heat conductivity, heat expansion coefficient, specific heat, yield stress, elastic modulus, and specific resistance are considered. Using the results of temperature distribution obtained from heat conduction analysis, the thermal elastic-plastic analysis is carried out to clarify mechanical behavior of spot welded specimen. In order to evaluate the effect of residual stresses, numerical analyses are carried out under tension-shear load in two cases respectively; one with residual stress, the other without residual stresses.

  • PDF

Bead Formation and Wire Temperature Distribution during Ultra-high-speed GTA Welding Using Pulse-heated Hot-wire

  • Shinozaki, K.;Yamamoto, M.;Mitsuhata, Koichi;Nagashima, Toshiharu;Kanazawa, T.;Arashin, H.
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.226-234
    • /
    • 2009
  • The purpose of this study was to investigate the melting phenomenon of filler wire in detail and to obtain the precise temperature distribution of filler wire during GTA welding under the ultra-high welding speed condition in order to develop the ultra-high-speed GTA welding process with the pulse-heated hot-wire system by using three kinds of materials. The melting phenomenon of filler wire was observed using a high-speed camera and the temperature distribution of filler wire was measured using a radiation thermometer. From the above result, the adequate welding conditions of each material to make the GTA welding process with the ultra-high welding speed could be obtained. The ultra-high-speed GTA welding process needed the adequate wire current in order to obtain the adequate temperature distribution and the adequate melting position of filler wire. Moreover, the temperature distributions of three kinds of filler wire could be estimated by using the proposed simple estimation method.

  • PDF

Prediction of Tensile Strength for Plasma-MIG Hybrid Welding Using Statistical Regression Model and Neural Network Algorithm (통계적 회귀 모형과 인공 신경망을 이용한 Plasma-MIG 하이브리드 용접의 인장강도 예측)

  • Jung, Jin Soo;Lee, Hee Keun;Park, Young Whan
    • Journal of Welding and Joining
    • /
    • v.34 no.2
    • /
    • pp.67-72
    • /
    • 2016
  • Aluminum alloy is one of light weight material and it is used to make LNG tank and ship. However, in order to weld aluminum alloy high density heat source is needed. In this paper, I-butt welding of Al 5083 with 6mm thickness using Plasma-MIG welding was carried out. The experiment was performed to investigate the influence of plasma-MIG welding parameters such as plasma current, wire feeding rate, MIG-welding voltage and welding speed on the tensile strength of weld. In addition we suggested 3 strength estimation models which are second order polynomial regression model, multiple nonlinear regression model and neural network model. The estimation performance of 3 models was evaluated in terms of average error rate (AER) and their values were 0.125, 0.238, and 0.021 respectively. Neural network model which has training concept and reflects non -linearity was best estimation performance.

Thermal and mechanical analysis on friction stir welding of AZ31 magnesium alloy by the finite element method (유한요소법에 의한 AZ31마그네슘 합금의 마찰교반용접시 유동 및 강도 해석)

  • Kang, Dae-Min;Park, Kyoung-Do;Jung, Yung-Suk
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.64-71
    • /
    • 2013
  • In this paper, finite element method was used for flow and strength analysis of AZ31 magnesium alloy under friction stir welding. The simulations were carried out by SYSWELD s/w, and the modeling of sheet was doned by unigraphics NX3 s/w. Welding variables for analysis were rotating speed and welding speed of tool. Also two-way factorial design method was applied to confirm the effect of welding variables on maximum temperature and stress of material used. From these results, the increaser welding speed of tool the decreaser maximum temperature, but the increaser maximum stress. Also the increaser rotating speed of tool the increaser maximum temperature, but the decreaser maximum stress. In addition the increaser welding speed of tool and the decreaser rotating speed of tool, the narrower heat effect zone. Finally rotating speed of tool influenced on maximum temperature more than welding speed of tool, and welding speed of tool influenced on maximum stress more than rotating speed of tool from the variance analysis.

[Retracted] The Effect of Welding Conditions on Tensile Characteristics and Thermal Stress of Al 5083 Alloy Applied to Co-environmental Leisure Ships ([논문 철회] 친환경 레져선박에 적용되는 Al 5083 합금의 인장특성 및 열응력에 미치는 용접조건의 영향)

  • Moon, Byung Young;Lee, Ki Yeol;Kim, Kyu Sun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.6
    • /
    • pp.548-555
    • /
    • 2014
  • As a considerable, experimental approach, an Auto-carriage type of $CO_2$ welding machine and a MIG(Metal Inert Gas) welding robot under inert gas atmosphere were utilized in order to realize Al 5083 welding applied to hull and relevant components of green Al leisure ships. This study aims at investigating the effect of welding conditions(current, voltage, welding speed, etc) on thermal deformation that occurs as welding operation and tensile characteristics after welding, by using Al 5083, non-ferrous material, applied to manufacturing of co-environmental Al leisure ships. With respect to welding condition to minimize the thermal deformation, 150A and 16V at the wire-feed rate of 6mm/sec were acquired in the process of welding Al 5083 through an auto carriage type of $CO_2$ welding feeder. As to tensile characteristics of Al 5083 welding through a MIG welding robot, most of tensile specimens showed the fracture behavior on HAZ(Heat Affected Zone) located at the area joined with weld metal, except for some cases. Especially, for the case of the Al specimen with 5mm thickness, 284.62MPa of tensile strength and 11.41% of elongation were obtained as an actual allowable tensile stress-strain value. Mostly, after acquiring the optimum welding condition, the relevant welding data and technical requirements might be provided for actual welding operation site and welding procedure specification(WPS).

Bead Visualization Using Spline Algorithm (스플라인 알고리즘을 이용한 비드 가시화)

  • Koo, Chang-Dae;Yang, Hyeong-Seok;Kim, Maeng-Nam
    • Journal of Welding and Joining
    • /
    • v.34 no.1
    • /
    • pp.54-58
    • /
    • 2016
  • In this research paper, suggest method of generate same bead as an actual measurement data in virtual welding conditions, exploit morphology information of the bead that acquired through robot welding. It has many multiple risk factors to Beginners welding training, by we make possible to train welding in virtual reality, we can reduce welding training risk and welding material to exploit bead visualization algorithm that we suggest so it will be expected to achieve educational, environmental and economical effect. The proposed method is acquire data to each case performing robot welding by set the voltage, current, working angle, process angle, speed and arc length of welding condition value. As Welding condition value is most important thing in decide bead form, we would selected one of baseline each item and then acquired metal followed another factors change. Welding type is FCAW, SMAW and TIG. When welding trainee perform the training, it's difficult to save all of changed information into database likewise working angle, process angle, speed and arc length. So not saving data into database are applying the method to infer the form of bead using a neural network algorithm. The way of bead's visualization is applying the spline algorithm. To accurately represent Morphological information of the bead, requires much of morphological information, so it can occur problem to save into database that is why we using the spline algorithm. By applying the spline algorithm, it can make simplified data and generate accurate bead shape. Through the research paper, the shape of bead generated by the virtual reality was able to improve the accuracy when compared using the form of bead generated by the robot welding to using the morphological information of the bead generated through the robot welding. By express the accurate shape of bead and so can reduce the difference of the actual welding training and virtual welding, it was confirmed that it can be performed safety and high effective virtual welding education.

Solidification Crackin in Root Pass for One-side Welding of 590MPa Class Steel for Pressure Vessels by FCAW (FCAW에 의한 590MPa급 고장력압력용기강의 초층편면용접부에서 발생하는 고온균열)

  • 김우열;한일욱;유덕상;방한서;안용식;박화순
    • Journal of Welding and Joining
    • /
    • v.17 no.5
    • /
    • pp.47-54
    • /
    • 1999
  • It is well known that solidification cracking often occurs in welds of root pass for one-side welding under the conditions of high welding currents and speeds. In this study, the solidification in 590MPa class steel for pressure vessels SPPV490 was investigated by using flux-cored arc welding(FCAW) with 4 types of welding wires and welding conditions of 200∼280A and 2.8∼ 4.2mm/sec. In order to compared the result of cracking in SPPV490, 0.2%C steel for welded structure of SWS400 and 0.45%C steel for machine structural SM45C were also used as base metals. As the results, all the cracks formed in some welding conditions were observed near the center of weld bead. The solidification cracks were generally initiated near the upper surface of bead and propagated toward the inner part. The solidification cracking generally increased with welding current and welding speed in the same base metal and welding material. In cracking susceptibility, SPPV490 showed higher cracking susceptibility than SWS400 in all welding conditions and welding materials. It was considered that cracking susceptibility could not be evaluated with the hardness of weld metals. The cracking ratio increased with decreasing of a/b(a and b; the width of the upper surface and the back surface of the bead) as shape factor of bead. The cracking tendency with shape factor of bead was extended under the condition of higher welding currents.

  • PDF