• Title/Summary/Keyword: Welding Material

Search Result 1,143, Processing Time 0.024 seconds

A study on the Optimum Conditions of Nd:YAG LBW for Zircaloy-4 End Cap Closure By Optical Fiber Transmission (광섬유전송에 의한 Zircaloy-4 봉단마개밀봉의 Nd:YAG LBW의 최적조건에 관한 연구)

  • 김수성;김웅기;이영호
    • Journal of Welding and Joining
    • /
    • v.15 no.6
    • /
    • pp.85-95
    • /
    • 1997
  • This study is to investigate the optimum conditions of Nd:YAG laser beam welding for Zircaloy-4 end cap closure by optical fiber transmission. Laser welding parameters which affect the penetration depth and bead width were experimentally examined using the various beam radius by the beam quality analyzer, joint geometries of end cap and the laser parameters which mean pulse width, repetition rate and pulse energy. Also, an optimum welding speed and the effect of assistant gas with varying the flow rate of He were investigated. We found that the laser average power for the end cap welding will be 230W and rotation speed must not exceed 8 RPM, the best position of focus using optical fiber with 600.mu.m will be 2 to 3mm below the surface of the material.

  • PDF

Joining Ability and Mechanical Properties of Friction Stir Lap Welded A5052-H112 Alloy (A5052-H112 합금의 겹치기 마찰교반접합 건전성)

  • Ko, Young-Bong;Choi, Jun-Woong;Park, Kyeung-Chae
    • Journal of Welding and Joining
    • /
    • v.28 no.1
    • /
    • pp.34-40
    • /
    • 2010
  • In Friction Stir Lap Welding(FSLW), the movement of material within the weld was more important than the microstructure, due to the interface present between the sheets. Thus, The soundness of free defect, Effective Sheet Thickness(EST) and width of joint were most important factor of mechanical properties. Specimens by lap joint types that were 'A-type' and 'R-type' were made in this study. A-type tensile specimen was loaded at advancing side and R-type tensile specimen was loaded at retreating side. Macro-, micro-structural observation and mechanical properties of FSLW A5052-H112 alloy ware investigated under varying rotating and welding speed. The results were as follows: Material hook formed decreasing after sharply increasing was appeared at the end interface of joint area in advanced side, and material hook formed decreasing after smoothly increasing was observed at that in retreated side. Tensile load had no relation with defects. As rotating speed was higher, tensile strength was increasing and EST was decreasing regardless of joint types. joint efficiency was over 70%. In a result of fractography, fracture in A-type was partially occurred by dimple in SZ, and fracture in R-type was generally occurred by dimple in HAZ.

A Comparative Evaluation of Mechanical Properties of Orthodontic Wire Joints according to Soldering Methods (납착 방법에 따른 교정용 와이어의 기계적 특성 비교)

  • Lee, Hye-Jin;Hong, Min-Ho
    • Journal of Technologic Dentistry
    • /
    • v.36 no.4
    • /
    • pp.239-246
    • /
    • 2014
  • Purpose: The purpose of this study was to compare the tensile strength and mechanical properties of orthodontic wire joints made by gas soldering and laser welding, with and without filling material, to identify the effectiveness and potential clinical application of laser welded orthodontic wires. Methods: Three joint configurations of orthodontic wire were used: diameter 0.9 to 0.9 mm wire, diameter 0.9 to 0.5 wire and diameter 0.9 mm wire to band. The joints were made using three different methods: gas soldering, laser welding with and without filling material. For each kind of joint configuration or connecting method 7 specimens were carefully produced. The tensile strengths were measured with a universal testing machine (Zwick/Roell, Instron, USA). The hardness measurements were carried out with a hardness tester(Future-Tech Co. Tokyo, Japan). Data were analyzed by AVOVA(p= .05) and Turkey HD test(p= .05). Results: In all cases, gas soldering joints were ruptured on a low level on tensile bonding strength. Significant differences between laser welding and gas soldering(p< .05) were found in each joint configuration. The highest tensile strength means were observed for laser welding, with filling material, of 0.9 to 0.9 mm wire joint. Conclusion: In conclusion, the elastic modulus and tensile strength means of laser soldering with filling material were the highest, and the tensile strength means of laser soldering were higher than those of gas soldering.

Microstructural Effects on Hydrogen Delayed Fracture of 600MPa and 800MPa grade Deposited Weld Metal (600MPa급과 800MPa급 전용착금속의 미세조직에 따른 수소지연파괴 거동)

  • Kang, Hee Jae;Lee, Tae Woo;Yoon, Byung Hyun;Park, Seo Jeong;Chang, Woong Seong;Cho, Kyung Mox;Kang, Namhyun
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.1
    • /
    • pp.52-58
    • /
    • 2012
  • Hydrogen-delayed fracture (HDF) was analyzed from the deposited weld metals of 600-MPa and 800-MPa flux-cored arc (FCA) welding wires, and then from the diffusible hydrogen behavior of the weld zone. Two types of deposited weld metal, that is, rutile weld metal and alkali weld metal, were used for each strength level. Constant loading test (CLT) and thermal desorption spectrometry (TDS) analysis were conducted on the hydrogen pre-charged specimens electrochemically for 72 h. The effects of microstructures such as acicular ferrite, grain-boundary ferrite, and low-temperature-transformation phase on the time-to-failure and amount of diffusible hydrogen were analyzed. The fracture time for hydrogen-purged specimens in the constant loading tests decreased as the grain size of acicular ferrite decreased. The major trapping site for diffusible hydrogen was the grain boundary, as determined by calculating the activation energies for hydrogen detrapping. As the strength was increased and alkali weld metal was used, the resistance to HDF decreased.

A Study on High Temperature Tensile Property of Inconel 625 for Petroleum Application by Flux cored Arc Welding Process (석유시추용 인코넬 625강의 FCAW용접에 의한 고온인장 특성에 관한 연구)

  • PARK KEYUNG-DONG;AN DO-KEYUNG;JIN YOUNG-BEOM
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.352-355
    • /
    • 2004
  • Inconel 625 is useful in variety of industrial applications because of the resistance to attack in various corrosive media at temperatures from $200^{\circ}C$ to over $1090^{\circ}C$, in combination with good law- and high temperature mechanical strength. Rencently, this material is also used widely in offshore processing piping in order to extend the maintenance tenn and improve the quality of anti-corrosion. In general, high quality weldments for this material are readily produced by commonly used processes. Not all processes are applicable to this material group, Ni-alloys. Metallurgiad characterictics or the unavailability of matching, position or suitable welding processes. Nowadays, the flux cored wire is developed and applied for the better productivity in several welding position including the vertical position. in this study, the weldability and weldment characteristics of inconel 625 are considered in FCAW weld associated with the several shielding gases($80\%Ar\;+\;20\%\;CO_2,\;50\%Ar\;+\;50\%\;CO_2,\;100\%\;CO_2$) in viewpoint of welding productivity.

  • PDF

MAGNESIUM TWB PANEL WITH LASER WELDING FOR AUTO BODY ASSEMBLY (차체 제작을 위한 레이저용접 마그네슘 TWB 판넬)

  • Lee, Mok-Young;Chang, Woong-Seong;Yoon, Byung-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1312-1316
    • /
    • 2007
  • Strip casted and rolled magnesium sheet is become exiting material for car manufacturer, due to its better formability and specific strength compare with conventional extruded sheet. TWB technology was attractive for car body designer, because it saves the weight of the car without strength loss. In this study, the laser welding performance of magnesium sheet was investigated for Mg TWB panel manufacturing. The material was strip casted and rolled magnesium alloy sheet contains 3 wt% Al and 1 wt% Zn (AZ31). Lamp pumped Nd:YAG laser of 2kW was used and its laser light was delivered by optical fiber of 0.6mm core diameter to material surface with focusing optics of 200mm focal length for TWB welding. The microstructure of weld bead was investigated to check internal defects such as inclusion, porosity and cracks. Also mechanical properties and formability were evaluated for press forming of car body. For the results, there was no crack but inclusion or porosity on weld at some conditions.The tensile strength of weld was over 95% of base metal. Inner and outer panel of engine hood were press formed and assembled at elevated temperature.

  • PDF

EFFECT OF MICROSTRUCTURE ON MECHANICAL PROPERTIES IN FRICTION STIR WELDED CAST A356 ALUMINUM ALLOY

  • Sato, Yutaka S.;Kaneko, Takayasu;Urata, Mitsunori;Kokawa, Hiroyuki
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.493-498
    • /
    • 2002
  • Friction stir welding (FSW) is a relatively new solid-state joining process which can homogenize the heterogeneous microstructure by intensely plastic deformation arising from the rotation of the welding tool. The present study applied the FSW to an A356 aluminum (AI) alloy with the as-cast heterogeneous microstructure in the T6 temper condition, and examined an effect of microstructure on mechanical properties in the weld. The base material consisted of Al matrix with a high density of strengthening precipitates, large eutectic silicon and a lot of porosities. The FSW led to fragment of the eutectic silicon, extinction of the porosities and dissolution of the strengthening precipitates in the Al alloy. The dissolution of strengthening precipitates reduced the hardness of the weld around the weld center and the transverse ultimate tensile strength of the weld. Longitudinal tensile specimen containing only the stir zone showed the roughly same strength as the base material and a much larger elongation. Moreover, Charpy impact tests indicated that the stir zone had remarkably the higher absorbed energy than the base material. The higher mechanical properties of the stir zone were attributed to a homogenization of the as-cast heterogeneous microstructure by FSW.

  • PDF

Effect of Si content on Nugget Diameter of Electric Resistance Spot Welded Dual Phase Steel (DP강의 전기저항점용접부 너깃직경에 미치는 Si 함량의 영향)

  • Kong, Jong-Pan;Kang, Gil-Mo;Han, Tae-Kyo;Chin, Kwang-Geun;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.29 no.5
    • /
    • pp.99-105
    • /
    • 2011
  • In this study, effect of Si content on nugget diameter in electric resistance spot welded dual-phase(DP) steel was investigated. The cold rolled DP steels with different Si content (0.5, 1.0, 1.5, 2.0 wt.%) were used and thickness of those sheet was 1.2mm. With increasing Si content, nugget diameter was increased at the same welding current. This is attributed to increase of heat input result from high resistivity. Also, nugget diameter was increased with an increase in Si content for the same heat input. For this reason, the melting point of DP steel is lowered with an increase in the Si content. And solid DP steel can easily be transformed to a liquid phase because the low melting point. Finally, a prediction formula for the nugget diameter(N.D.) could be obtained in terms of heat input(Q) and melting point(M.P) as follows: N.D.(mm) = 0.11Q(J) - 0.0031 M.P.($^{\circ}C$) + 0.32.

Development of Inconel for Marine Structural Steel by FCAW Process (해양 구조용 인코넬강의 FCAW 용접의 최적기술 개발)

  • PARK KEYUNG-DONG;JIN YOUNG-BEOM;AN DO-KEYUNG
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.234-238
    • /
    • 2004
  • Inconel 625 is useful in variety of industrial applications because of the resistance to attack in various corrosive media at temperatures from $200^{\circ}C$ to aver $1090^{\circ}C$, in combination with good law- and high temperature mechanical strength. Rencently, this material is also used widely in offshore processing piping in order to extend the maintenance term and improve the quality of anti-corrosion. In general, high quality weldments for this material are readily produced by commonly used processes. Not all processes are applicable to this material group, Ni-alloys. Metallurgical characterictics or the unavailability of matching, position or suitable welding processes. Nowadays, the flux cored wire is developed and applied for the better productivity in several welding position including the vertical position. in this study, the weldability and weldment characteristics (mechanical properties) of inconel 625 are considered in FCAW(Flux Core Arc Welding) associated with the several shielding gases($80\%Ar\;+\;20\%CO_2,\;50\%Ar+50CO_2,\;100CO_2$) in viewpoint of welding productivity.

  • PDF

A Study on Characteristics of Inconel 625 for Petroleum Application by FCAW Process ; Effect of Shield Gases Change Influence on a Mechanical Properties (석유시추용 인코넬 625강의 FCAW 용접에 관한 연구 ; 보호가스 변화가 기계적 성질에 미치는 영향)

  • PARK KEYUNG-DONG;JIN YOUNG-BEOM;PARK HYOUNG-DONG
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.6 s.61
    • /
    • pp.96-100
    • /
    • 2004
  • Inconel 625 is useful in a variety of industrial applications because of the resistance to attack in various corrosive media at temperatures from $200^{\circ}C$ to over $1090^{\circ}C$, in combination with good low and high temperature mechanical strength. Rencently this material has also been widely used in offshore processing piping in order to extend the maintenance term and improve the quality of anti-corrosion. In general, high quality weldings for this material are readily produced by commonly used processes. How, not all processes are applicable to this material group of Ni-alloys. Metallurgical or the unavailability of matching, position or suitable welding processes produce a lower quality. Nowadays, the flux cored wire is developed and applied for increased productivity in several welding positions, including the vertical position. In this study, the weldability and weldment characteristics(mechanical properties) of inconel 625 are considered in FCAW(Flux Core Arc Welding) associated with the several shielding gases$(80\%Ar+20\%CO2,\;50\%Ar+50CO2,\;100CO2)$ in view of welding productivity.