• Title/Summary/Keyword: Welding Material

Search Result 1,143, Processing Time 0.028 seconds

Keyhole Welding of Aluminum Alloy by Variable Polarity Plasma Arc Welding (가변극성 플라즈마 아크용접을 이용한 알루미늄 합금의 키홀 용접)

  • Yu, Jun-Tae;Tak, Jeong-Su;Yun, Jong-Hun;Jang, Yeong-Sun;Lee, Yeong-Mu;Gang, Seok-Bong
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.72-74
    • /
    • 2006
  • The application of the variable polarity plasma arc welding process to A12219 is described. The thickness of aluminum alloy is 11.45mm and 5.08mm. 1-pass keyhole welding is applied to butt welding and 2-pass welding is also applied to thick material. During welding, all welding parameters are controlled by automated system and acquired by 10kHz rate. This paper covers the welding parameters, result of non-destructive test and tensile test.

  • PDF

The Comparison of Characteristic between Electron Beam Welding and Narrow-gap TIG welding with 316LN Stainless Steel (스테인레스강 316LN의 전자빔용접과 협개선TIG 용접특성 비교)

  • Jeong, In-Cheol;Kim, Yong-Jae;Lee, Gyeong-Un;Sim, Deok-Nam
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.82-84
    • /
    • 2005
  • Among the advanced welding processes which are superior to conventional process, Electron beam welding and Narrow-gap TIG welding are most prospective in being applicable for the heavy industry field. With STS316LN, which is high strengthened austenitic stainless steel, the characteristic evaluation for these welding processes was carried out through the mechnical tests and property analyses. For the tensile strength EBW is better while in reverse for the yield strength. In Narrow-gap TIG the distribution of hardness values has some deviation according to the thickness direction while EBW has a tendency of a litter high hardness values in weld metal. After EB welding brings the reduction of nitrogen content, in TIG welding weld metal depends on the contents of welding material. Both processes have almost austenitic structure, but weld metal of EBW is also shown terrific structure

  • PDF

Proper Arc Welding Condition Derivation of Auto-body Steel by Artificial Neural Network (신경망 알고리즘을 이용한 차체용 강판 아크 용접 조건 도출)

  • Cho, Jungho
    • Journal of Welding and Joining
    • /
    • v.32 no.2
    • /
    • pp.43-47
    • /
    • 2014
  • Famous artificial neural network (ANN) is applied to predict proper process window of arc welding. Target weldment is variously combined lap joint fillet welding of automotive steel plates. ANN's system variable such as number of hidden layers, perceptrons and transfer function are carefully selected through case by case test. Input variables are welding condition and steel plate combination, for example, welding machine type, shield gas composition, current, speed and strength, thickness of base material. The number of each input variable referred in welding experiment is counted and provided to make it possible to presume the qualitative precision and limit of prediction. One of experimental process windows is excluded for predictability estimation and the rest are applied for neural network training. As expected from basic ANN theory, experimental condition composed of frequently referred input variables showed relatively more precise prediction while rarely referred set showed poorer result. As conclusion, application of ANN to arc welding process window derivation showed comparatively practical feasibility while it still needs more training for higher precision.

Resistance Spot Welding Characteristics of Mg Alloy Applying Current Waveform Control (전류 파형 제어를 적용한 마그네슘 합금의 저항 점 용접 특성)

  • Choi, Dong-Soon;Hwang, In-Sung;Kim, Dong-Cheol;Ryu, Jae-Wook;Kang, Moon-Jin
    • Journal of Welding and Joining
    • /
    • v.32 no.2
    • /
    • pp.70-75
    • /
    • 2014
  • In automotive industry, applying of Mg alloy to autobody has been issued recently as a light metal. But poor resistance spot weldability of Mg alloy is blocking commercialization. So studies on improving resistance spot weldability of Mg alloy is increasing continuously. For reduce loss of heat input during welding, inverter DC power source is considered because of short rise time to target welding current. But rapid rising of welding current can increase temperature rapidly in nugget and oxide film between electrode and base metal, and that causes generating expulsion on low welding current range. In this study, for increase optimum welding current range and prevent generating expulsion, applicate various types of welding current waveform controls during resistance spot welding. For analysis effects of each current waveform control, acceptable welding current regions according to electrode force and welding time is determined and lobe diagram is derived. In result, pre heat is proposed as optimum type of welding current waveform control.

Performance Evaluation of Protective Clothing Materials for Welding in a Hazardous Shipbuilding Industry Work Environment (조선업의 유해 작업환경 대응을 위한 용접 보호복 소재의 성능평가 연구)

  • Kim, Min Young;Bae, Hyun Sook
    • Fashion & Textile Research Journal
    • /
    • v.15 no.3
    • /
    • pp.452-460
    • /
    • 2013
  • This study conducted a performance evaluation of protective clothing materials used for welding in a hazardous shipbuilding industry work environment. The welding process was selected as the one that most requires industrial protective clothing according to work environment characteristics. Flame proofing and convection heat protection performance (HTI) in the heat transfer characteristics of protective clothing material were indicated in the order of SW1(Oxidant carbon)>SW2(silica coated Oxidant carbon)>SW4(Oxidant carbon/p-aramid)>SW3(flame proofing cotton). However, radiant heat protection performance (RHTI) and the heat transfer factor (TF) were indicated in the order of SW1>SW4>SW2>SW3 and showed different patterns from the convection heat protection performance. SW1 showed superior air permeability and water vapor permeability. The tensile strength and tear strength of welding protective clothing material were indicated in the order of SW4>SW2>SW3>SW1 and showed that a blend fabric of p-aramid was the most superior for the mechanical properties of SW4. SW1 had excellent heat transfer properties in yet met the minimum performance requirements of tensile strength proved to be inappropriate as being a material for welding protective clothing. The abrasion resistance of woven fabric proved superior compared to nonwoven fabric; however, seam strength and dimensional change both met the minimum performance requirements and indicated that all samples appeared non-hazardous. Finally, oxidant carbon/p-aramid blend fabric appeared appropriate as a protective clothing materials for welding.

Technical Development using High Strength Steel of mP Type on Automobile Parts (TRIP형 고장력강판의 부품적용 기술개발)

  • 류성지;이상제;이규현;이문용
    • Journal of Welding and Joining
    • /
    • v.20 no.3
    • /
    • pp.46-53
    • /
    • 2002
  • The expolitation of substitute material and new manufacturing technology of the automobile body panel for next generation cars have been steadily professed by advanced automobile companies. High strength steel of TRIP (Transformation of Induced Plasticity) type is developed in response to demands about crash safety and high strength of automobile. In this study, basic technologies can fix up problems occurring on the mass production and applied to the other forming methods will be prepared through rasping a property of TRIP material.

A Study on Extru-Shear Welding(ESW) Process of Aluminum Plates (알루미늄 판재의 압출전단접합에 관한 연구)

  • Lee, K.K.;Lee, M.Y.;Jin, I.T.
    • Transactions of Materials Processing
    • /
    • v.19 no.8
    • /
    • pp.452-459
    • /
    • 2010
  • It was investigated that two plates of aluminum can be welded by hot extru-shear welding process with extru-shear welding dies, and that the welding strength and metal flow on the welding section were analyzed by computer simulation according to the welding variables such as inclined angle of cutter and overlapped length of plates and temperature of plates. It was known by computer simulation that welding strength on the welding section of plates could be influenced by the inclined angle of cutter and overlapped length of plates and temperature of plates. And it was known by experiments that two plates of aluminum can be welded on the end sections by hot extru-shear welding process using extru-shear welding dies, and that welding strength is the highest when inclined angle of dies is $70^{\circ}$, and overlapped length is 1.2 mm, and temperature is $520^{\circ}$, when aluminum 5052 two plates with 1.6 mm thickness are used as welding material.

Effect of Welding Parameters on Wire Seam Weldability of Tin Coated Steels for Small Containers (용접 조건이 소형 용기용 Sn 도금 강재의 와이어 심 용접성에 미치는 영향)

  • 김기철;이기호;이목영
    • Journal of Welding and Joining
    • /
    • v.15 no.5
    • /
    • pp.74-83
    • /
    • 1997
  • Effect of welding parameters such as current, speed and electrode pressure on the weld quality of tin coated steels for small containers was discussed in this paper. Welding was performed with low frequency wire seam welding system which was loaded with 1.5mm in diameter copper wire electrode. The welding parameters were monitored at the position close to the welding spot so as to minimize the instrumentation error, and the signals were stored into a digital data acquisition system before analysis. Results showed that critical current for sufficient nugget size increased as the base material thickness increased, while the width of the optimum welding range was reduced. The acceptable welding condition derived from this study was found to be effective within the thickness range of $\pm$10% of the nominal (0.25mm) thickness. Tin coating layer was proved not to affect seriously on the weld quality, i.e. strength and formability, since consumable wire electrode was used in this process. Test results also demonstrated that the welding current was thought to be the most effective parameter to form an acceptable weld, while welding speed or electrode pressure exerted less effect on the nugget formation. However, these two parameters played an important role because the former was related to the nugget overlap interval, and the latter, to the formation of expulsion during welding.

  • PDF

Determination of Optimal Welding Parameter for an Automatic Welding in the Shipbuilding

  • Park, J.Y.;Hwang, S.H.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.1
    • /
    • pp.17-22
    • /
    • 2001
  • Because the quantitative relationships between welding parameters and welding result are not yet blown, optimal values of welding parameters for $CO_2$ robotic arc welding is a difficult task. Using the various artificial data processing methods may solve this difficulty. This research aims to develop an expert system for $CO_2$ robotic arc welding to recommend the optimal values of welding parameters. This system has three main functions. First is the recommendation of reasonable values of welding parameters. For such work, the relationships in between the welding parameters are investigated by the use of regression analysis and fuzzy system. The second is the estimation of bead shape by a neural network system. In this study the welding current voltage, speed, weaving width, and root gap are considered as the main parameters influencing a bead shape. The neural network system uses the 3-layer back-propagation model and a generalized delta rule as teaming algorithm. The last is the optimization of the parameters for the correction of undesirable weld bead. The causalities of undesirable weld bead are represented in the form of rules. The inference engine derives conclusions from these rules. The conclusions give the corrected values of the welding parameters. This expert system was developed as a PC-based system of which can be used for the automatic or semi-automatic $CO_2$ fillet welding with 1.2, 1.4, and 1.6mm diameter the solid wires or flux-cored wires.

  • PDF