• 제목/요약/키워드: Welding Heat-input

검색결과 435건 처리시간 0.022초

대형 컨테이너선 건조를 위한 고능률 용접기술 (High Productive Welding Technologies for Large Container Ship)

  • 구연백;성희준;최기영;김경주
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2009년도 특별논문집
    • /
    • pp.80-86
    • /
    • 2009
  • In order to improve productivity of large container ship construction, large heat input and/or high productive welding technologies are necessary. This can be achieved by the joint research and cooperation among steel maker, welding consumable company, welding equipment company and ship yards. Two electrodes SAW process is effective the plate butt welding and partial joint welding, while FGB welding process is for the connection of block to block joint. The higher strength and thicker steel is developed, the more reliable welding procedure such as two electrodes EGW including light weight welding equipment should be developed.

  • PDF

일렉트로 가스 용접부의 기계적 성질에 미치는 Mn 및 입열량의 영향 (Effects of Mn and Heat-input on the Mechanical Properties of EGW Welds)

  • 김남인;정상훈;이정수;강성원;김명현
    • 대한금속재료학회지
    • /
    • 제47권3호
    • /
    • pp.195-201
    • /
    • 2009
  • This paper is concerned with effects of Mn and heat-input on the mechanical properties of EGW welds. Four different kinds of welding consumables were fabricated by varying Mn contents such as 1.3, 1.5, 1.7, 2.0%Mn and each consumable was welded for EGW on four heat-input conditions between 190 and 340 KJ/Cm. Mn contents were decreased as heat-input increases and alloy elements (C, Si, Ti, B, Al) to deoxidize easily also revealed similar tendency to Mn. Their microstructure, Charpy impact property and strength were investigated, and it is found that Charpy impact property and strength exhibit a strong dependence on change of microstructure by Mn contents and heat-input. The increase of Mn contents or the decrease of heat-input made the microstructure fine and increase volume fraction of acicular ferrite, thereby leading to the great improvement of Charpy impact property and strength. In case of single EGW, optimum Mn contents are over 1.7% for the toughness and strength.

3wt% Si 첨가강의 레이저용접부 성형성에 미치는 용접변수의 영향 (Effect of Laser Welding Variables on the Formability of Si Added Steel Welds)

  • 박준식;우인수;이종봉
    • Journal of Welding and Joining
    • /
    • 제24권4호
    • /
    • pp.15-21
    • /
    • 2006
  • The aim of present study is to investigate the effect of welding parameters and heat treatment conditions on the formability of the $CO_2$ laser welded silicon steel sheet. It was found that there is optimum range of the heat input ($0.6{\sim}0.7kJ/cm$) and gap distance ($0.125{\sim}0.150mm$) for the high tensile strength and the avoidance of the fracture in weld metal. Also, it was essential fur the improvement of formability to perform pre- and post-welding heat treatment which cause the uniform mixture of base metal and welding consumable.

유한요소해석을 위한 하이브리드용접 입열모델 선정에 관한 기초적 연구 (Fundamental Study on The Heat Input Model of Hybrid Welding for The Finite Element Analysis)

  • 방한서;김영표
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2003년도 추계학술발표대회 개요집
    • /
    • pp.36-38
    • /
    • 2003
  • In order to understand the basic knowledge on the model of heat source in hybrid welding, authors have conducted finite element analysis to calculate heat distribution using three heat source models of non-split type and split type(Volume, Volume-Volume, Volume-Surface). From the research result, we can confirm that Volume-Volume heat source of split type is suitable for the analysis of heat distribution.

  • PDF

하이드로포밍용 열연강재의 레이저 용접성 및 기계적 특성 (Laser weldability and mechanical behavior of hot rolled steels for hydroforming applications)

  • 이원범;이종봉
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2003년도 춘계학술발표대회 개요집
    • /
    • pp.84-86
    • /
    • 2003
  • The laser welding and its analysis of thin-sheet carbon steels were carried out with high power CO$_2$1aser. Bead on plate welding of thin sheet was examined to investigate the effect of weld variables of laser welding, and to obtain optimum welding condition. Butt-welding was also carried out to show the effect of gap on the laser weldability of thin sheet. At high welding speed, the partial penetration was obtained by low heat input. Otherwise, porosity was formed in the bead at low weld speed because of too many heat input. The maximum gap tolerance on laser welding was observed to be about 0.2mm. This gap size has good relationship with beam size of laser spot(about 0.3mm). The formability of welded sheet was about 80% value of base metal and the gap size has not affected on the formability, although weld quality is dependent on the gap size.

  • PDF

연속파 Nd:YAG 레이저를 이용한 Ni-MH전지용 저탄소강의 다층 박판 용접 특성 (Multi-thin plate welding characteristics of Low Carbon Steel for Ni-MH battery of using Continuous Wave Nd:YAG laser)

  • 양윤석;황찬연;유영태
    • 한국생산제조학회지
    • /
    • 제20권6호
    • /
    • pp.720-728
    • /
    • 2011
  • Lap joint welding conducts low carbon steel plates using a 2.0kW continuous wave Nd:YAG laser beam. The specimen is composed of thin plate of 20 sheets. Process Variables contain two controlled parameters of the laser power and the welding speed. In order to quantitatively examine the characteristics of the lap welding, the welding quality of the cut section, stain-stress behavior, and the hardness of the welded part are investigated. The weld width difference between the top and the bottom because the welding speed is increased. The reason, cooling rate is decreased because of fast welding speed. When the heat input is higher, larger volume of the base metal will melt and the welding heat has longer time to conduct into the bottom from the top. The microstructure and tensile properties of the joints are investigated in order to analyze the effects of heat input on the quality of laser welded specimen. From the results of the investigation, We observe that welding quality is good for the laser power of 1800W, and laser welding speed from 1.8m/min to 2.2m/min.

이종재료(STS304+Al6061) TIG-FSW Hybrid 용접부의 열 특성 해석 (Analysis of Complex Heat Distribution in TIG Assisted Friction Stir Welding of Dissimilar Materials (STS304+Al6061))

  • 엠.에스.비죠이;방희선;방한서
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2010년도 춘계학술발표대회 초록집
    • /
    • pp.59-59
    • /
    • 2010
  • Friction stir welding has become a viable and important manufacturing alternative or fabrication component, especially in aerospace and automobile applications involving aluminium alloys. In recent years, there is an increasing interest for FSW of dissimilar metals and alloys, particularly systems which are difficult to weld by conventional, thermal (or fusion) welding. In this study we tried to analyse the complex heat distribution occurring in TIG assisted FSW of dissimilar butt joint (STS304 and Al6061). For this, an analytical model for heat generation by FSW based on contact conditions has been developed. The heat input was calculated considering the coefficient of friction and slip factor between each work piece material with the tool material. The thermal model is used to generate the temperature characteristics curve, which successfully predicts the maximum welding temperature in each alloys. The analysis was carried out using the in-house solver.

  • PDF

570MPa급 용접구조용강 다층 용접금속의 강도 및 충격인성에 미치는 입열 및 패스간 온도의 영향 (Effect of Heat Input and Interpass Temperature on the Strength and Impact Toughness of Multipass Weld Metal in 570MPa Grade Steel)

  • 변지철;방국수;장웅성;박철규;정우현
    • Journal of Welding and Joining
    • /
    • 제24권1호
    • /
    • pp.64-70
    • /
    • 2006
  • 570MPa grade weldable steels were gas metal arc welded with various heat inputs and interpass temperatures using flux cored wires. Effects of heat input and interpass temperature on the strength and impact toughness of weld metal were investigated in terms of microstructural change, recovery of alloying elements, and the amount of reheated weld metal. Increase of heat input and interpass temperature resulted in decrease of weld metal strength. This is because of the small amount of acicular ferrite, large columnar size and low recovery of alloying elements such as manganese and silicon. In addition to the microstructural change, weld metal toughness was also influenced by the deposition sequence. It increased with an increase of the amount of reheated weld metal.

厚板 鋼構造物 熔接이음부의 熱分布 特性에 關한 硏究 (A Study on the Characteristics of Heat Distribution of Welded Joint on the Steel Structure with Thick Plate)

  • 방한서;김종명
    • Journal of Welding and Joining
    • /
    • 제13권1호
    • /
    • pp.138-144
    • /
    • 1995
  • Recently, as the industrial structure tends to become large, the thickness of structural plate becomes thicker. Therefore, the thicker the plate of welded structure is, the larger the shape of welded joint. The effect of large heat input makes large heat affected zone(HAZ). These bring to complict welding residual stress and to weaken material, which may cause extremely harm to the safety of structures. Nevertheless, welding is design is regulated by the KS, JIS or standard in the resister of shipping such as KR, ABS or LR. However, these rules are based on rather experimental than theoretical. In this study, the computer program of heat conduction, considering un-steady state and quasi-steady state, is developed for optimizing(minimizing) a shape of welded joint. The characteristics of heat on the welded joints with various shapes are clarified by the results of the analyses.

  • PDF

A Study on the Formation of Imperfections in CW $CO_2$Laser Weld of Diamond Saw Blade

  • Shin, M.;Lee, C.;Kim, T.;Park, H.
    • International Journal of Korean Welding Society
    • /
    • 제2권1호
    • /
    • pp.21-24
    • /
    • 2002
  • The main purpose of this study was to investigate the formation mechanisms of imperfections such as irregular humps, outer cavity and inner cavity in the laser fusion zone of diamond saw blade. Laser beam welding was conducted to join two parts of blade; mild steel shank and Fe-Co-Ni sintered tip. The variables were beam power and travel speed. The microstructure and elements distributions of specimens were analyzed with SEM, AES, EPMA and so on. It was found that these imperfections were responded to heat input. Irregular humps were reduced in 10.4∼l7.6kJ/m heat input range. However there were no clear evidences, which could explain the relations between humps formation and heat input. The number of outer cavity and inner cavity decreased as heat input was increased. Considering both possible defects formations mechanisms, it could be thought that outer cavity was caused by insufficient refill of keyhole, which was from rapid solidification of molten metal and fast molten metal flow to the rear keyhole wall at low heat input. More inner cavities were found near the interface of the fusion zone and sintered segment and in the bottom of the fusion zone. Inner cavity was mainly formed in the upper fusion zone at high heat input whereas was in the bottom at low heat input. Inner cavity was from trapping of coarsened preexist pores in the sintered tip and metal vapor due to rapid solidification of molten metal before the bubbles escaped.

  • PDF