• Title/Summary/Keyword: Welding Force

Search Result 341, Processing Time 0.022 seconds

Structural Performances of an Axially-loaded Node in Single Layered Free Form Space Structures (단층 프리폼 대공간 구조물의 노드에 대한 축하중 구조성능 평가)

  • Lee, Kyoung-Ju;Oh, Jin-Tak;Hwang, Kyung-Ju;Ju, Young-Kyu;Kim, Sang-Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.1
    • /
    • pp.59-71
    • /
    • 2012
  • Results of the analysis of the structural behavior of axially loaded nodes in freeform structure were not fully understood due to certain difficulties, including the application of various welding and bolting types. In this study, a node of single layered freeform structure was tested to determine its structural behavior when subjected to axial loads. The tests were classified into node ball tests to evaluate the center of the node subjected to cyclic and monotonic loading. The node part tests were also conducted to evaluate the whole node subjected to monotonic loading. The test showed that the node ball is safe with the tensile force, but the node ball needs to increase its strength with the node loaded compressive force due to the additional bending moment of the node ball's asymmetric form.

Enhancing the Performance of High-Strength Concrete Corbels Using Hybrid Reinforcing Technique (하이브리드 보강기법을 활용한 고강도 콘크리트 내민받침의 성능 향상)

  • Yang, Jun-Mo;Lee, Joo-Ha;Min, Kyung-Hwan;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.13-16
    • /
    • 2008
  • Corbels are short cantilevers that project from the faces of a column and are a type of stress disturbed member, resisting both the ultimate shear force applied to them by the beam, and the ultimate horizontal force caused by shrinkage, temperature changes, and creep of the supported elements. Recently, as there have been an increase in the use of high-strength concrete and the concern about corrosion problems, lots of researches about hybrid reinforcing technique, applying strategically high performance reinforcements to the concrete elements, are performed. In this study, fiber reinforced high strength concrete corbels were constructed and tested for applying hybrid reinforcing technique to the corbels using steel fibers and headed bars. The results showed that the performance in terms of load carrying capacities, stiffness, ductility, and crack width was improved, as the steel fibers were added and the percentage of steel fibers was increased. In addition, the corbel specimens used headed bars as main tension ties showed superior load carrying capacities, stiffness, and ductility to the corbel specimens anchored main tension ties by welding to the transverse bars.

  • PDF

Fatigue Test of Remote CO2 Laser Welded Joints and Its Analysis (원격 CO2 레이저 용접이음에 대한 피로시험과 해석)

  • Chu, Seok-Jae;Zhao, Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1213-1219
    • /
    • 2012
  • A remote $CO_2$ laser system can rapidly change both the distance and the direction of the laser beam by moving a lens and rotating mirrors. It is then easy to weld complex patterns of weld lines. A conventional spot weld joint specimen and a remote $CO_2$ laser weld joint specimen with complex weld line patterns were prepared and tested both statically and dynamically. The relationships between the fatigue strength, i. e. the maximum cyclic force, and the fatigue life were obtained. The fatigue strength of the tested welded joints at two million cycles was found to be approximately 10% of the static strength. Furthermore, it was observed that the fatigue fracture mode changed with the level of the applied cyclic force. The fatigue crack origins were confirmed as the highest stress points found in the structural analysis. The maximum cyclic stress for different weld patterns converges as the fatigue life approaches two million cycles.

Fatigue Strength of Al-5052 Tensile-Shear Specimens using a SPR Joining Method (SPR 접합법을 이용한 Al-5052 인장-전단 시험편의 피로강도)

  • Lee, Man Suk;Kim, Taek Young;Kang, Se Hyung;Kim, Ho Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.9-14
    • /
    • 2014
  • Self-piercing riveting(SPR) is a mechanical fastening technique which is put pressure on the rivet for joining the sheets. Unlike a spot welding, SPR joining does not make the harmful gas and $CO_2$ and needs less energy consumption. In this study, static and fatigue tests were conducted using tensile-shear specimens with Al-5052 plates for evaluation of fatigue strength of the SPR joints. During SPR joining process for the specimen, using the current sheet thickness and a rivet, the optimal applied punching force was found to be 21 kN. And, the maximum static strength of the specimen produced at the optimal punching force was 3430 N. During the fatigue tests for the specimens, interface failure mode occurred on the top substrate close to the rivet head in the most high-loading range region, but on the bottom substrate close to the rivet tail in the low -loading range region. There was a relationship between applied load amplitude $P_{amp}$ and lifetime of cycle N for the tensile-shear, $P_{amp}=3395.5{\times}N^{-0.078}$. Using the stress-strain curve of the Al-5052 from tensile test, the simulations for fatigue specimens have been carried out using the implicit finite element code ABAQUS. The relation between von-Mises equivalent stress amplitude and number of cycles was found to be ${\sigma}_{eq}=514.7{\times}N^{-0.033}$.

Optimization of Soldering Process of Sn-3.0Ag-0.5Cu and Sn-1.0Ag-0.7Cu-1.6Bi-0.2In Alloys for Solar Combiner Junction Box Module (태양광 접속함 정션박스 모듈 적용을 위한 Sn-3.0Ag-0.5Cu 및 Sn-1.0Ag-0.7Cu-1.6Bi-0.2In 솔더링의 공정최적화)

  • Lee, Byung-Suk;Oh, Chul-Min;Kwak, Hyun;Kim, Tae-Woo;Yun, Heui-Bog;Yoon, Jeong-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.13-19
    • /
    • 2018
  • The soldering property of Pb-containing solder(Sn-Pb) and Pb-free solders(Sn-3.0Ag-0.5Cu and Sn-1.0Ag-0.7Cu-1.6Bi-0.2In) for solar combiner box module was compared. The solar combiner box module was composed of voltage and current detecting modules, diode modules, and other modules. In this study, solder paste printability, printing shape inspection, solder joint property, X-ray inspection, and shear force measurements were conducted. For optimization of Pb-free soldering process, step 1 and 2 were divided. In the step 1 process, the printability of Pb-containing and Pb-free solder alloys were estimated by using printing inspector. Then, the relationship between void percentages and shear force has been estimated. Overall, the property of Pb-containing solder was better than two Pb-free solders. In the step 2 process, the property of reflow soldering for the Pb-free solders was evaluated with different reflow peak temperatures. As the peak temperature of the reflow process gradually increased, the void percentage decreased by 2 to 4%, but the shear force did not significantly depend on the reflow peak temperature by a deviation of about 0.5 kgf. Among different surface finishes on PCB, ENIG surface finish was better than OSP and Pb-free solder surface finishes in terms of shear force. In the thermal shock reliability test of the solar combiner box module with a Pb-free solder and OSP surface finish, the change rate of electrical property of the module was almost unchanged within a 0.3% range and the module had a relatively good electrical property after 500 thermal shock cycles.

Development of a diaphragm type actuator (다이어프램형 방식의 파일럿 액추에이터 개발)

  • Lee, Joongyoup;Jeong, Daeseong;Han, Sangyeop
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.160-166
    • /
    • 2014
  • The shutoff valve of a Liquid Rocket Engines (LRE) controls the flow of propellant between turbo-pump and combustion devices of LRE using pilot pressure and spring force. The shutoff valve is closed when the pilot pressure is removed from the diaphragm type actuator. During designing process of life cycle is when should be analyzed according to the characteristics of forces with respect to the opening and closing of diaphragm actuator. A valve has been designed to adjust the control pressure which is required to open a poppet and to determine the working fluid pressure at which a valve starts to close. During flow capacity test under room temperature as a part of life cycle tests, the leakage in diaphragm was occurred due to the leakage of sheet welding sections. The operating cycle of the diaphragm type actuator is about 61 times with 22 MPa of pilot pressure.

Experimental study on through-beam connection system for concrete filled steel tube column-RC beam

  • Tian, Chunyu;Xiao, Congzhen;Chen, Tao;Fu, Xueyi
    • Steel and Composite Structures
    • /
    • v.16 no.2
    • /
    • pp.187-201
    • /
    • 2014
  • A new through-beam connection system for a concrete filled steel tube column to RC beam is proposed. In this connection, there are openings on the steel tube while the reinforced concrete beams are continuous in the joint zone. The moment and shear force at the beam ends can be transferred to column by continuous rebar and concrete. The weakening of the axial load and shear bearing capacity due to the opening of the steel tube can be compensated by strengthening steel tube at joint zone. Using this connection, construction of the joint can be made more convenient since welding and hole drilling in situ can be avoided. Axial compression and reversed cyclic loading tests on specimens were carried out to evaluate performance of the new beam-column connection. Load-deflection performance, typical failure modes, stress and strain distributions, and the energy dissipation capacity were obtained. The experimental results showed that the new connection have good bearing capacity, superior ductility and energy dissipation capacity by effectively strengthen the steel tube at joint zone. According to the test and analysis results, some suggestions were proposed to design method of this new connection.

Fatigue Characteristics on Welded Joint of Gear Box-Shank in Vibro Ripper for Rock Crash (암반 파쇄용 진동리퍼 기어박스-생크 용접부의 피로특성)

  • Oh, K.K.;Kim, Jaehoon;Kim, Y.W.;Park, J.Y.;Yang, G.S.;Park, J.W.;Kim, S.H.
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.28-33
    • /
    • 2014
  • Vibro ripper worked by high frequency vibration is developed to do rock fragmentation and work of ripper is the different concept with other existing breakers. The gear box-shank welded joint of vibro ripper is very important part to deliver vibromotive force to tooth, so this part should endure high frequency vibration environments. The purposes of this study are to choose the optimal welding conditions for fatigue strength. The conditions were made using three kind of shank materials and two kind of filler metals. Shank materials are Hadox-hituf, Posten80 and AR400, and filler metals are CSF-71T and CSF-81T. The fatigue test was conducted each condition. Fracture surface was observed to estimate fracture characteristics of welded joint using SEM.

Design of a Hybrid Serial-Parallel Robot for Multi-Tasking Machining Processes (ICCAS 2005)

  • Kyung, Jin-Ho;Han, Hyung-Suk;Ha, Young-Ho;Chung, Gwang-Jo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.621-625
    • /
    • 2005
  • This paper presents a new hybrid serial-parallel robot(HSPR), which has six degrees of freedom driven by ball screw linear actuators and motored joints. This hybrid robot design presents a compromise between high rigidity of fully parallel manipulators and extended workspace of serial manipulators. The hybrid robot has a large, singularity-free workspace and high stiffness. Therefore, the presented kinematic structure of the hybrid robot is particularly suitable for multi-tasking machining processes such as milling, drilling, deburring and grinding. In addition to the machining processes, the hybrid robot can be used for welding, fixturing, material handling and so on. The study on design of the hybrid robot is performed. A kinematic analysis and mechanism description of the hybrid robot with six-controlled degree of freedom is presented. In the virtual design works by DADS, workspace and force analysis are discussed. A numerical model is treated to demonstrate our analysis and to determine the range of permissible extension of the struts. Also, we determine some important design parameters for the hybrid robot.

  • PDF

Design and Fabrication of Single-person Neighborhood Electric Vehicle with Streamlined Car Body (유선형 차체가 적용된 1인용 저속 전기 자동차의 설계 및 제작)

  • Na, Yeong-min;Park, Jong-kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.55-63
    • /
    • 2018
  • In recent years, with the growing interest in electric vehicles, the development of a Neighborhood Electronic Vehicle (NEV) made for urban driving is accelerating. Existing NEVs are set to ~0.3 - 0.35 with more emphasis on performance rather than minimizing air resistance. In this paper, a NEV with a streamlined car body is proposed. The shape of dolphins and sharks was applied to the car body to minimize the air resistance generated when driving. Also, the performance of the vehicle was estimated by calculating the traction force and the roll couple, etc. To check the drag coefficient of the car body, finite element analysis software (COMSOL Multiphysics) was used. The frame of the vehicle is divided into the forward and the rear parts. Carbon pipe is used for the frame by MIG welding. The car body of the vehicle was fabricated by forming carbon fiber. This study confirmed the general possibility of using NEVs through driving experiments.