• 제목/요약/키워드: Weld Lobe Diagram

검색결과 3건 처리시간 0.017초

자동차 새시용 DP60강 인버터 DC 저항 점용접의 용접성 평가 (Evaluation of Weldability on the Resistance Spot Welding of DP60 Steels for Automotive Chassis)

  • 김인주;오익현
    • 한국기계기술학회지
    • /
    • 제13권4호
    • /
    • pp.143-148
    • /
    • 2011
  • This study analyzes the resistance spot weldability of DP60 steels. To analyze the resistance spot weldability of DP60 steels, tensile strength test and macro-section test were conducted for the resistance spot welds. Acceptable welding conditions were determined as a function of the resistance spot welding process parameters such as electrode force, welding time, and welding current. The lower limit of the welding lobe was the minimum shear tension strength for 590MPa-grade steel while the upper limit was determined whether or not expulsion was detected.

Parameter Design and Analysis for Aluminum Resistance Spot Welding

  • Cho, Yong-Joon;Li, Wei;Hu, S. Jack
    • Journal of Welding and Joining
    • /
    • 제20권2호
    • /
    • pp.102-108
    • /
    • 2002
  • Resistance spot welding of aluminum alloys is based upon Joule heating of the components by passing a large current in a short duration. Since aluminum alloys have the potential to replace steels fur automobile body assemblies, it is important to study the process robustness of aluminum spot welding process. In order to evaluate the effects of process parameters on the weld quality, major process variables and abnormal process conditions were selected and analyzed. A newly developed two-stage, sliding-level experiment was adopted fur effective parameter design and analysis. Suitable ranges of welding current and button diameters were obtained through the experiment. The effects of the factors and their levels on the variation of acceptable welding current were considered in terms of main effects. From the results, it is concluded that any abnormal process condition decreases the suitable current range in the weld lobe curve. Pareto analysis of variance was also introduced to estimate the significant factors on the signal-to-noise (S/N) ratio. Among the six factors studied, fit-up condition is found to be the most significant factor influencing the SM ratio. Using a Pareto diagram, the optimal condition is determined and the SM ratio is significantly improved using the optimal condition.

페라이트계 및 오스테나이트계 스테인리스강과 IF강의 이종 접합부의 저항 점 용접성 평가 (Assessment of Resistance Spot Weldability of Dissimilar Joints of Austenitic Stainless Steels/IF Steels and Ferritic Stainless Steels/IF Steels)

  • 이진범;김동철;남대근;강남현;김순국;유지훈;임영목;박영도
    • 대한금속재료학회지
    • /
    • 제49권1호
    • /
    • pp.64-72
    • /
    • 2011
  • The spot weldability of dissimilar metal joints between austenitic stainless steels (STS316)/IF steels and ferritic stainless steels (STS430)/IF steels was investigated. This study was aimed to determine the spot welding parameters for a dissimilar metal joint and to evaluate the dissimilar metal joint's weldability, including its welding nugget shape, tensile-shear strength, hardness, and microstructure. The comparison of these results was described in terms of fracture behavior. Compared with the weld lobe of similar metal joints, dissimilar metal joints (STS430/IF) had reduced weld current range. However, the weld lobe of STS316/IF steel joint showed increased weld current range. This is because the dilution of chemical composition in the molten weld pool suppressed the heat input being caused by Joule heat with current flow through the samples. The microstructure of the fusion zone was fully martensite and mixture of ferrite and martensite for austenitic stainless steel/IF steel and ferritic stainless steel/IF steel combination, respectively. The experimental results showed that the shape of nugget was asymmetric, in which the fusion zone of the austenitic and ferritic stainless steel sheet was larger due to the higher bulk-resistance. The predicted microstructure by using the Schaeffler diagram was well matched with experimental results. After peel test, the fracture was initiated from heat affected zone of ferritic stainless steel sheet side, however the final fracture was propagated into the IF steel sheet side due to its lower strength.