• Title/Summary/Keyword: Weighting adjustment

Search Result 60, Processing Time 0.023 seconds

DETERMINATION OF OPTIMAL ROBUST ESTIMATION IN SELF CALIBRATING BUNDLE ADJUSTMENT (자체검정 번들조정법에 있어서 최적 ROBUST추정법의 결정)

  • 유환희
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.9 no.1
    • /
    • pp.75-82
    • /
    • 1991
  • The objective of this paper is to investigate the optimal Robust estimation and scale estimator that could be used to treat the gross errors in a self calibrating bundle adjustment. In order to test the variability in performance of the different weighting schemes in accurately detecting gross error, five robust estimation methods and three types of scale estimators were used. And also, two difference control point patterns(high density control, sparse density control) and three types of gross errors(4$\sigma o$, 20$\sigma o$, 50$\sigma o$) were used for comparison analysis. As a result, Anscombe's robust estimation produced the best results in accuracy among the robust estimation methods considered. when considering the scale estimator about control point patterns, It can be seen that Type II scale estimator provided the best accuracy in high density control pattern. On the other hand, In the case of sparse density control pattern, Type III scale estimator showed the best results in accuracy. Therefore it is expected to apply to robustified bundle adjustment using the optimal scale estimator which can be used for eliminating the gross error in precise structure analysis.

  • PDF

Estimation using response probability when missing data happen on the second occasion

  • Park, Hyeonah;Na, Seongryong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.1
    • /
    • pp.263-269
    • /
    • 2014
  • When the loss of samples appears under repeated surveys, new samples can often replace missing values. Estimators using response probability can be considered under repeated surveys on two occasions where new samples are selected instead of missing data on the second occasion. We propose a new estimator that uses both respondents and new samples on the second occasion. It is considered for the simulation setting that missing values can happen at the second occasion and are replaced by new samples. We can see that the proposed estimator is more efficient than that using a weighting adjustment method for respondents at the second occasion.

Handling the nonresponse in sample survey (설문조사에서의 무응답 처리)

  • Lee, Hwa-Jung;Kang, Suk-Bok
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.6
    • /
    • pp.1183-1194
    • /
    • 2012
  • When it comes to a survey, no answer would occur frequently. Therefore various methods for handling nonresponse have been applied to analyse the survey. In this paper, the ratio of occurrence of two type of nonresponse cases - unit nonresponse and item nonresponse - is presented using previous real survey data, and we compared complete data and data with nonresponse. We suggest the reason of happening of nonresponse and the ratio of nonresponse using data collected through group interviews.

THE CALIBRATION ESTIMATION USING TWO-STEP NEWTON'S ALGORITHM IN TWO-PHASE SAMPLING

  • Son, Chang-Kyoon;Yum, Joon-Keun
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.1
    • /
    • pp.237-245
    • /
    • 2000
  • In this paper, we consider to the adjustment weighting procedure in the two phase sampling scheme. In general, the unit nonresponses may be occured in the final survey operation. When the unit nonresponse be generated in survey, it is able to use the auxiliary variable for estimating of interest variable. In this viewpoint, we use the two kinds level of auxiliary variable, $X_{1k}$ and $X_{2k}$ for the calibration procedure. We proprose the two-step Newton's method in the calibration estimation procedure for the two phase sampling.

A Wide-band wide-tunable Current-Mode Gamma Corrector for HDTV Camera Applications (HDTV용 카메라의 전류 모드 감마 보정기)

  • Woo, Sung-Hun;Hwang, Jong-Tae;Cho, Gyu-Hyeong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3190-3192
    • /
    • 1999
  • A Novel wide-band wide-tunable current-mode (CM) gamma corrector for HDTV camera applications is proposed. The gamma corrector provides accurate gamma control in a wide range by simple electrical adjustment of weighting amplifiers' gain. It has wide signal bandwidth more than 40MHz sufficient for HDTV video signal processing and is implementable with simple integrated circuit with low power dissipation of 125mW.

  • PDF

Effects of Edge Detection on Least-squares Model-image Fitting Algorithm

  • Wang, Sendo;Tseng, Yi-Hsing;Liou, Yan-Shiou
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.159-161
    • /
    • 2003
  • Fitting the projected wire-frame model to the detected edge pixels on images by using least-squares approach, called Least-squares Model-image Fitting (LSMIF), is the key of the Model-based Building Extraction (MBBE). It is implemented by iteratively adjusting the model parameters to minimize the squares sum of distances from the extracted edge pixels to the projected wire-frame. This paper describes a series of experiments and studies on various factors affect the fitting results, including the edge detectors, the weighting rules, the initial value of parameters, and the number of overlapped images. The experimental result is not only helpful to clarify the influences of each factor, but is also able to enhance the robustness of the LSMIF algorithm.

  • PDF

Optimal Design of Fuzzy-Neural Networkd Structure Using HCM and Hybrid Identification Algorithm (HCM과 하이브리드 동정 알고리즘을 이용한 퍼지-뉴럴 네트워크 구조의 최적 설계)

  • Oh, Sung-Kwun;Park, Ho-Sung;Kim, Hyun-Ki
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.7
    • /
    • pp.339-349
    • /
    • 2001
  • This paper suggests an optimal identification method for complex and nonlinear system modeling that is based on Fuzzy-Neural Networks(FNN). The proposed Hybrid Identification Algorithm is based on Yamakawa's FNN and uses the simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. In this paper, the FNN modeling implements parameter identification using HCM algorithm and hybrid structure combined with two types of optimization theories for nonlinear systems. We use a HCM(Hard C-Means) clustering algorithm to find initial apexes of membership function. The parameters such as apexes of membership functions, learning rates, and momentum coefficients are adjusted using hybrid algorithm. The proposed hybrid identification algorithm is carried out using both a genetic algorithm and the improved complex method. Also, an aggregated objective function(performance index) with weighting factor is introduced to achieve a sound balance between approximation and generalization abilities of the model. According to the selection and adjustment of a weighting factor of an aggregate objective function which depends on the number of data and a certain degree of nonlinearity(distribution of I/O data), we show that it is available and effective to design an optimal FNN model structure with mutual balance and dependency between approximation and generalization abilities. To evaluate the performance of the proposed model, we use the time series data for gas furnace, the data of sewage treatment process and traffic route choice process.

  • PDF

Analysis on the Effect of Unit Non-Response Adjustment using the Survey of Household Finances (가계금융조사를 활용한 단위무응답 조정효과 분석)

  • Baek, Jeeseon;Shim, Kyuho
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.3
    • /
    • pp.375-387
    • /
    • 2013
  • Unit non-response of surveys reduces the efficiency of the estimates and also causes non-response bias especially when there is large difference between respondents and non-respondents. Non-response weighting adjustments have usually been used to compensate for non-response. It is not easy to examine the non-response bias as well as to obtain information on the non-respondents in sample surveys. A household panel survey, called The Survey of Household Finances, was conducted in both 2010 and 2011. In this paper, we assume that non-response households in Wave 2 have strong non-response (non-cooperative) tendency. We classify those households into non-response households in Wave 1. Under this assumption, the characteristics of non-response households, the non-response bias and the effect of non-response adjustments are investigated.

Multi-FNN Identification by Means of HCM Clustering and ITs Optimization Using Genetic Algorithms (HCM 클러스터링에 의한 다중 퍼지-뉴럴 네트워크 동정과 유전자 알고리즘을 이용한 이의 최적화)

  • 오성권;박호성
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.5
    • /
    • pp.487-496
    • /
    • 2000
  • In this paper, the Multi-FNN(Fuzzy-Neural Networks) model is identified and optimized using HCM(Hard C-Means) clustering method and genetic algorithms. The proposed Multi-FNN is based on Yamakawa's FNN and uses simplified inference as fuzzy inference method and error back propagation algorithm as learning rules. We use a HCM clustering and Genetic Algorithms(GAs) to identify both the structure and the parameters of a Multi-FNN model. Here, HCM clustering method, which is carried out for the process data preprocessing of system modeling, is utilized to determine the structure of Multi-FNN according to the divisions of input-output space using I/O process data. Also, the parameters of Multi-FNN model such as apexes of membership function, learning rates and momentum coefficients are adjusted using genetic algorithms. A aggregate performance index with a weighting factor is used to achieve a sound balance between approximation and generalization abilities of the model. The aggregate performance index stands for an aggregate objective function with a weighting factor to consider a mutual balance and dependency between approximation and predictive abilities. According to the selection and adjustment of a weighting factor of this aggregate abjective function which depends on the number of data and a certain degree of nonlinearity, we show that it is available and effective to design an optimal Multi-FNN model. To evaluate the performance of the proposed model, we use the time series data for gas furnace and the numerical data of nonlinear function.

  • PDF

Determination of an Optimum Initial Cable Tension Force for Cable-Stayed Bridges using the Least Square Method (최소자승법을 이용한 사장교의 적정 케이블 장력 결정)

  • Park, Yong Myung;Cho, Hyun Jun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.6 s.79
    • /
    • pp.727-736
    • /
    • 2005
  • This study presents a method of determining the optimum cable tension forces for the proper initial equilibrium state of a cable-stayed bridge using the least square method. The proposed method minimizes the errors, i.e., the differences, such as the deflection and the moments of the girder and the tower, between the target values from a continuous beam by considering the cable anchor point as supports of the girder and the responses obtained from the analysis of the entire cable-stayed bridge system. Especially, the proposed method can selectively control the adjustment of the tower moment, the girder moment, and the deflections by introducing the weighing matrix. Through numerical analysis and comparisons with existing studies, the usefulness and validity of the proposed method was verified.