• Title/Summary/Keyword: Weighted combination

Search Result 183, Processing Time 0.023 seconds

Analysis and Implementation of Linear Combination of Weighted Order Statistic Filters (Linear Combination of Weighted Order Statistic 필터의 분석과 구현)

  • 송종환;이용훈
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.2
    • /
    • pp.21-27
    • /
    • 1994
  • Linear combination of weighted order statistic(LWOS) filters, which is an extension of stack filters, can represent any Boolean function(BF) or its extension. Which is called the extended BF(EBF). In this paper, we present a procedure for finding an LWOS filter of the simplest type from LWOS filters which are equivalent to a given BF or EBF. In addition, a property that is useful for implementing an LWOS filter is derived and an algorithm for LWOS filtering is presented.

  • PDF

Protein-Protein Interaction Prediction using Interaction Significance Matrix (상호작용 중요도 행렬을 이용한 단백질-단백질 상호작용 예측)

  • Jang, Woo-Hyuk;Jung, Suk-Hoon;Jung, Hwie-Sung;Hyun, Bo-Ra;Han, Dong-Soo
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.10
    • /
    • pp.851-860
    • /
    • 2009
  • Recently, among the computational methods of protein-protein interaction prediction, vast amounts of domain based methods originated from domain-domain relation consideration have been developed. However, it is true that multi domains collaboration is avowedly ignored because of computational complexity. In this paper, we implemented a protein interaction prediction system based the Interaction Significance matrix, which quantified an influence of domain combination pair on a protein interaction. Unlike conventional domain combination methods, IS matrix contains weighted domain combinations and domain combination pair power, which mean possibilities of domain collaboration and being the main body on a protein interaction. About 63% of sensitivity and 94% of specificity were measured when we use interaction data from DIP, IntAct and Pfam-A as a domain database. In addition, prediction accuracy gradually increased by growth of learning set size, The prediction software and learning data are currently available on the web site.

Weighted Soft Voting Classification for Emotion Recognition from Facial Expressions on Image Sequences (이미지 시퀀스 얼굴표정 기반 감정인식을 위한 가중 소프트 투표 분류 방법)

  • Kim, Kyeong Tae;Choi, Jae Young
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1175-1186
    • /
    • 2017
  • Human emotion recognition is one of the promising applications in the era of artificial super intelligence. Thus far, facial expression traits are considered to be the most widely used information cues for realizing automated emotion recognition. This paper proposes a novel facial expression recognition (FER) method that works well for recognizing emotion from image sequences. To this end, we develop the so-called weighted soft voting classification (WSVC) algorithm. In the proposed WSVC, a number of classifiers are first constructed using different and multiple feature representations. In next, multiple classifiers are used for generating the recognition result (namely, soft voting) of each face image within a face sequence, yielding multiple soft voting outputs. Finally, these soft voting outputs are combined through using a weighted combination to decide the emotion class (e.g., anger) of a given face sequence. The weights for combination are effectively determined by measuring the quality of each face image, namely "peak expression intensity" and "frontal-pose degree". To test the proposed WSVC, CK+ FER database was used to perform extensive and comparative experimentations. The feasibility of our WSVC algorithm has been successfully demonstrated by comparing recently developed FER algorithms.

A Study on the Optimum Scheme for Determination of Operation Time of Line Feeders in Automatic Combination Weighers

  • Keraita James N.;Kim Kyo-Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1567-1575
    • /
    • 2006
  • In an automatic combination weigher, the line feeders distribute the product to several weighing hoppers. The ability to supply appropriate amount of product to the weighing hoppers for each combination operation is crucial for the overall performance. Determining the right duration of operating a line feeder to supply a given amount of product becomes very challenging in case of products which are irregular in volume or specific gravity such as granular secondary processed foods. In this research, several schemes were investigated to determine the best way for a line feeder to approximate the next operating time in order to supply a set amount of irregular goods to the corresponding weighing hopper. Results obtained show that a weighted least squares method (WLS) employing 10 data points is the most effective in determining the operating times of line feeders.

On Combination of Several Weighted Logrank Tests

  • Park, Sang-Gue;Jeong, Gyu-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.2
    • /
    • pp.213-220
    • /
    • 1995
  • We consider a class of the weighted logrank tests and 4 types of weights in this class. We propese a test based on the maximum of 4 weighted logrank statistics and suggest a simulation techniqur to obtain the p-value of proposed test. It is shown through the simulation studies that the proposed test is robust and has reasonably good powers comparing with the well known efficient tests.

  • PDF

Cluster Group Multicast by Weighted Clustering Algorithm in Mobile Ad-hoc Networks (이동 에드-혹 네트워크에서 조합 가중치 클러스터링 알고리즘에 의한 클러스터 그룹 멀티캐스트)

  • 박양재;이정현
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.3
    • /
    • pp.37-45
    • /
    • 2004
  • In this paper we propose Clustered Group Multicast by Clustering Algorithm in Wireless Mobile Ad-hoc Network. The proposed scheme applies to Weighted Cluster Algorithm Ad-hoc network is a collection of wireless mobile hosts forming a temporary network without the aid of any centralized administration or reliable support services such as wired network and base station. In ad hoc network muting protocol because of limited bandwidth and high mobility robust, simple and energy consume minimal. WCGM method uses a base structure founded on combination weighted value and applies combination weight value to cluster header keeping data transmission by seeped flooding, which is the advantage of the exiting FGMP method. Because this method has safe and reliable data transmission, it shows the effect to decrease both overhead to preserve transmission structure and overhead for data transmission.

Multisensor Data Combination Using Fuzzy Weighted Average (퍼지 가중 평균을 이용한 다중 센서 데이타 융합)

  • Kim, Wan-Joo;Ko, Joong-Hyup;Chung, Myung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.383-386
    • /
    • 1993
  • In this paper, we propose a sensory data combination method by a fuzzy number approach for multisensor data fusion. Generally, the weighting of one sensory data with respect to another is derived from measures of the relative reliabilities of the two sensory modules. But the relative weight of two sensory data can be approximately determined through human experiences or insufficient experimental data without difficulty. We represent these relative weight using appropriate fuzzy numbers as well as sensory data itself. Using the relative weight, which is subjective valuation, and a fuzzy-numbered sensor data, the fuzzy weighted average method is used for a representative sensory data. The manipulation and calculation of fuzzy numbers can be carried out using the Zadeh's extension principle which can be approximately implemented by the $\alpha$-cut representation of fuzzy numbers and interval analysis.

  • PDF

Locally-Weighted Polynomial Neural Network for Daily Short-Term Peak Load Forecasting

  • Yu, Jungwon;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.163-172
    • /
    • 2016
  • Electric load forecasting is essential for effective power system planning and operation. Complex and nonlinear relationships exist between the electric loads and their exogenous factors. In addition, time-series load data has non-stationary characteristics, such as trend, seasonality and anomalous day effects, making it difficult to predict the future loads. This paper proposes a locally-weighted polynomial neural network (LWPNN), which is a combination of a polynomial neural network (PNN) and locally-weighted regression (LWR) for daily shortterm peak load forecasting. Model over-fitting problems can be prevented effectively because PNN has an automatic structure identification mechanism for nonlinear system modeling. LWR applied to optimize the regression coefficients of LWPNN only uses the locally-weighted learning data points located in the neighborhood of the current query point instead of using all data points. LWPNN is very effective and suitable for predicting an electric load series with nonlinear and non-stationary characteristics. To confirm the effectiveness, the proposed LWPNN, standard PNN, support vector regression and artificial neural network are applied to a real world daily peak load dataset in Korea. The proposed LWPNN shows significantly good prediction accuracy compared to the other methods.

Generalized Weighted Linear Models Based on Distribution Functions

  • Yeo, In-Kwon
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.10a
    • /
    • pp.161-166
    • /
    • 2003
  • In this paper, a new form of generalized linear models is proposed. The proposed models consist of a distribution function of the mean response and a weighted linear combination of distribution functions of covariates. This form addresses a structural problem of the link function in the generalized linear models. Markov chain Monte Carlo methods are used to estimate the parameters within a Bayesian framework.

  • PDF

A CHARACTERIZATION OF M-HARMONICITY

  • Lee, Jae-Sung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.1
    • /
    • pp.113-119
    • /
    • 2010
  • If f is M-harmonic and integrable with respect to a weighted radial measure $\upsilon_{\alpha}$ over the unit ball $B_n$ of $\mathbb{C}^n$, then $\int_{B_n}(f\circ\psi)d\upsilon_{\alpha}=f(\psi(0))$ for every $\psi{\in}Aut(B_n)$. Equivalently f is fixed by the weighted Berezin transform; $T_{\alpha}f = f$. In this paper, we show that if a function f defined on $B_n$ satisfies $R(f\circ\phi){\in}L^{\infty}(B_n)$ for every $\phi{\in}Aut(B_n)$ and Sf = rf for some |r|=1, where S is any convex combination of the iterations of $T_{\alpha}$'s, then f is M-harmonic.