• Title/Summary/Keyword: Weighted Proportional

Search Result 73, Processing Time 0.016 seconds

Denoising on Image Signal in Wavelet Basis with the VisuShrink Technique Using the Estimated Noise Deviation by the Monotonic Transform (웨이블릿 기저의 영상신호에서 단조변환으로 추정된 잡음편차를 사용한 VisuShrink 기법의 잡음제거)

  • 우창용;박남천
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.2
    • /
    • pp.111-118
    • /
    • 2004
  • Techniques based on thresholding of wavelet coefficients are gaining popularity for denoising data because of the reasonable performance at the low complexity. The VisuShrink which removes the noise with the universal threshold is one of the techniques. The universal threshold is proportional to the noise deviation and the number of data samples. In general, because the noise deviation is not known, one needs to estimate the deviation for determining the value of the universal threshold. But, only for the finest scale wavelet coefficients, it has been known the way of estimating the noise deviation, so the noise in coarse scales cannot be removed with the VisuShrink. We propose here a new denoising method which removes the noise in each scale except the coarsest scale by Visushrink method. The noise deviation at each band is estimated by the monotonic transform and weighted deviation, the product of estimated noise deviation by the weight, is applied to the universal threshold. By making use of the universal threshold and the Soft-Threshold technique, the noise in each band is removed. The denoising characteristics of the proposed method is compared with that of the traditional VisuShrink and SureShrink method. The result showed that the proposed method is effective in denoising on Gaussian noise and quantization noise.

  • PDF

Improvement of LMS Algorithm Convergence Speed with Updating Adaptive Weight in Data-Recycling Scheme (데이터-재순환 구조에서 적응 가중치 갱신을 통한 LMS 알고리즘 수렴 속 도 개선)

  • Kim, Gwang-Jun;Jang, Hyok;Suk, Kyung-Hyu;Na, Sang-Dong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.9 no.4
    • /
    • pp.11-22
    • /
    • 1999
  • Least-mean-square(LMS) adaptive filters have proven to be extremely useful in a number of signal processing tasks. However LMS adaptive filter suffer from a slow rate of convergence for a given steady-state mean square error as compared to the behavior of recursive least squares adaptive filter. In this paper an efficient signal interference control technique is introduced to improve the convergence speed of LMS algorithm with tap weighted vectors updating which were controled by reusing data which was abandoned data in the Adaptive transversal filter in the scheme with data recycling buffers. The computer simulation show that the character of convergence and the value of MSE of proposed algorithm are faster and lower than the existing LMS according to increasing the step-size parameter $\mu$ in the experimentally computed. learning curve. Also we find that convergence speed of proposed algorithm is increased by (B+1) time proportional to B which B is the number of recycled data buffer without complexity of computation. Adaptive transversal filter with proposed data recycling buffer algorithm could efficiently reject ISI of channel and increase speed of convergence in avoidance burden of computational complexity in reality when it was experimented having the same condition of LMS algorithm.

Tumor Habitat Analysis Using Longitudinal Physiological MRI to Predict Tumor Recurrence After Stereotactic Radiosurgery for Brain Metastasis

  • Da Hyun Lee;Ji Eun Park;NakYoung Kim;Seo Young Park;Young-Hoon Kim;Young Hyun Cho;Jeong Hoon Kim;Ho Sung Kim
    • Korean Journal of Radiology
    • /
    • v.24 no.3
    • /
    • pp.235-246
    • /
    • 2023
  • Objective: It is difficult to predict the treatment response of tissue after stereotactic radiosurgery (SRS) because radiation necrosis (RN) and tumor recurrence can coexist. Our study aimed to predict tumor recurrence, including the recurrence site, after SRS of brain metastasis by performing a longitudinal tumor habitat analysis. Materials and Methods: Two consecutive multiparametric MRI examinations were performed for 83 adults (mean age, 59.0 years; range, 27-82 years; 44 male and 39 female) with 103 SRS-treated brain metastases. Tumor habitats based on contrast-enhanced T1- and T2-weighted images (structural habitats) and those based on the apparent diffusion coefficient (ADC) and cerebral blood volume (CBV) images (physiological habitats) were defined using k-means voxel-wise clustering. The reference standard was based on the pathology or Response Assessment in Neuro-Oncologycriteria for brain metastases (RANO-BM). The association between parameters of single-time or longitudinal tumor habitat and the time to recurrence and the site of recurrence were evaluated using the Cox proportional hazards regression analysis and Dice similarity coefficient, respectively. Results: The mean interval between the two MRI examinations was 99 days. The longitudinal analysis showed that an increase in the hypovascular cellular habitat (low ADC and low CBV) was associated with the risk of recurrence (hazard ratio [HR], 2.68; 95% confidence interval [CI], 1.46-4.91; P = 0.001). During the single-time analysis, a solid low-enhancing habitat (low T2 and low contrast-enhanced T1 signal) was associated with the risk of recurrence (HR, 1.54; 95% CI, 1.01-2.35; P = 0.045). A hypovascular cellular habitat was indicative of the future recurrence site (Dice similarity coefficient = 0.423). Conclusion: After SRS of brain metastases, an increased hypovascular cellular habitat observed using a longitudinal MRI analysis was associated with the risk of recurrence (i.e., treatment resistance) and was indicative of recurrence site. A tumor habitat analysis may help guide future treatments for patients with brain metastases.