In this paper, a versatile multi-objective optimization concept for fatigue life prediction is introduced. Multi-objective decision making in engineering design refers to obtaining a preferred optimal solution in the context of conflicting design objectives. Compromise decision support problems are used to model engineering decisions involving multiple trade-offs. These methods typically rely on a summation of weighted attributes to accomplish trade-offs among competing objectives. This paper gives an interpretation of the decision parameters as governing both the relative importance of the attributes and the degree of compensation between them. The approach utilizes a response surface model, the compromise decision support problem, which is a multi-objective formulation based on goal programming. Examples illustrate the concepts and demonstrate their applicability.
Cities have complex system composed diverse activities. The activities in cities have complex relationship that creates diverse urban phenomena. Big Data is emerging technology in order to understand such complex network. This research aims to understand such relations by analysing the diverse city indexes. 28 indexes were collected in 25 of districts in Seoul city and analysed to find a weighted correlation. By defining the correlation values of certain years, it tries to predict the missed index values, "happiness" of each districts in other years. The result presents that the overall prediction accuracy 70.25%. However, for further discussion, the result is considered that this methods may not enough to use in practice, since the data has inconstant accuracy by different learning years.
Power demand forecasting is an important factor of the peak management. This paper deals with the 15 minutes ahead load forecasting problem in a DC urban railway system. Since supplied power lines to trains are connected with parallel, the load characteristics are too complex and highly non-linear. The main idea of the proposed method for the 15 minutes ahead prediction is to use the daily load similarity accounting for the load nonlinearity. An Euclidean norm with weighted factors including loads of the neighbor substation is used for the similar load selection. The prediction value is determinated by the sum of the similar load and the correction value. The correction has applied the neural network model. The feasibility of the proposed method is exemplified through some simulations applied to the actual load data of Incheon subway system.
본 연구에서는 선박의 초기 설계시에 비교적 간단한 자료로 각 선실에서의 소음수준을 예측하기 위한 방법으로 다중 회귀 분석법에 근거한 통계적 접근을 시도하였다. 선실에서의 소음수준에 영향을 미치는 여러 변수중에서, 선종, 재화중량, 주기관과 선실의 위치, 거주구 형상, 선실의 종류 및 프로펠러 스큐등이 최종 회귀식에 포함되었다. 회귀식의 추출시 사용하지 않은 6척 210개 선실에 대하여 검증을 실시한 결과, 77%의 선실이 3 dB 이내의 오차범위에 있음을 확인하였다.
딥러닝 기술과 하드웨어의 발전으로 다양한 분야에서 인공신경망과 관련한 연구가 활발히 진행되고 있다. 비디오 코덱 부분에서도 딥러닝 기술을 적용하는 부호화 기술이 많이 연구되고 있다. 본 논문은 최근 완료된 VVC 에 채택된 신경망 기반의 기술인 MIP(Matrix Weighted Intra Prediction)를 확장하여 보다 깊은 계층의 모델로 학습된 새로운 화면내 예측 모델을 제안한다. 기존 VVC 의 MIP 의 성능과 비교하기 위하여 기존 MIP 모델과 제안하는 다중완전연결계층(Fully Connected Layer) 화면내 예측 모델을 HEVC(High Efficiency Video Coding)에 적용하여 그 성능을 비교하였다. 실험결과 제안기법은 VVC MIP 대비 0.08 BD-rate 성능 향상을 보였다.
Communications for Statistical Applications and Methods
/
제31권4호
/
pp.365-375
/
2024
Diverse methods to evaluate the prediction model of a time to event have been proposed in the context of right censored data where all subjects are subject to be susceptible. A time-dependent AUC (area under curve) measures the predictive ability of a marker based on case group and control one which are varying over time. When a substantial portion of subjects are event-free, a population consists of a susceptible group and a cured one. An uncertain curability of censored subjects makes it difficult to define both case group and control one. In this paper, our goal is to propose a time-dependent AUC for a cure rate model when a censoring distribution is related with covariates. A class of inverse probability of censoring weighted (IPCW) AUC estimators is proposed to adjust the possible sampling bias. We evaluate the finite sample performance of the suggested methods with diverse simulation schemes and the application to the melanoma dataset is presented to compare with other methods.
This study was done to analyze the sound distortion, before and after insertion of the palatal palates. For this study, 4 healthy subjects (3 males and 1 female, each 24-year-old), who were born in Seoul were recruited from K university, and 3 type palatal plates were fabricated, each palatal thickness being 1.0mm, 2.5mm, dentoalveolar portion 2.5mm and elsewhere 1.0mm, named B,C,D-type repectively, and informants's sounds of /사(sa), 서(se), 소(so), 수(su), 스($s\.{+}$), 시(si)/ were recorded, without plate, and with palatal plates of different types, in succession. A series of analysis were adminstered through a 16 Bit IBM PC/AT using linear combination methods. These experiments were analyzed by the Cepstrum (Weighted and Euclidian), Log Area Ratio, Linear prediction correlation methods The findings led to the following conclusions : 1. It was confirmed that the same consonant, /ㅅ(s)/, variously distorted by the following vowel. 2. By and large, 시($s\.{+}$) was the most distorted in all conditions, and (sa), 소(so) were the least distorted in each condition. 3. There were no persistant correlation of the palatal plate types, and sound distortions of each informant were diverse with no regularities. 4. There were persistent correaltion to the Cepstrum (Weighted, Euclidian), Log Area Ratio. However, Linear prediction correlation has a different alteration pattern.
In areas around Deoksan Li and Deokjeon Li, Inje Eup, Inje Gun, located between $38^{\circ}2^{\prime}55^{{\prime}{\prime}}N$ and $38^{\circ}5^{\prime}50^{{\prime}{\prime}}N$ in latitude and $128^{\circ}11^{\prime}20^{{\prime}{\prime}}E$ and $128^{\circ}18^{\prime}20^{{\prime}{\prime}}E$ in longitude, large-sized avalanche disasters occurred due to Typhoon Ewiniar in 2006. As a result, 29 people were dead or missing, along with a total of 37.25 billion won of financial loss(Gangwon Province, 2006). To evaluate such landslide and debris flow risk areas and their vulnerability, this study applied a technique called 'Weight of Evidence' based on GIS. Especially based on the overlay analysis of aerial images before the occurrence of landslides and debris flows in 2005 and after 2006, this study extracted 475 damage-occurrence areas in a shape of point, and established a DB by using such factors as topography, hydrologic, soil and forest physiognomy through GIS. For the prediction diagram of debris flow and landslide risk areas, this study calculated W+ and W-, the weighted values of each factor of Weight Evidence, while overlaying the weighted values of factors. Besides, the diagram showed about 76% in prediction accuracy, and it was also found to have a relatively high correlationship with the areas where such natural disasters actually occurred.
고객반응 예측모형은 마케팅 프로모션을 제공할 목표고객을 효과적으로 선정할 수 있도록 하여 프로모션의 효과를 극대화 할 수 있도록 해준다. 오늘날과 같은 빅데이터 환경에서는 데이터 마이닝 기법을 적용하여 고객반응 예측모형을 구축하고 있으며 본 연구에서는 사례기반추론 기반의 고객반응 예측모형을 제시하였다. 일반적으로 사례기반추론 기반의 예측모형은 타 인공지능기법에 비해 성과가 낮다고 알려져 있으나 입력변수의 중요도에 따라 가중치를 상이하게 적용함으로써 예측성과를 향상시킬 수 있다. 본 연구에서는 프로모션에 대한 고객의 반응여부에 영향을 미치는 중요도에 따라 입력변수의 가중치를 산출하여 적용하였으며 동일한 가중치를 적용한 예측모형과의 성과를 비교하였다. 목욕세제 판매데이터를 사용하여 고객반응 예측모형을 개발하고 로짓모형의 계수를 적용하여 입력변수의 중요도에 따라 가중치를 산출하였다. 실증분석 결과 각 변수의 중요도에 기반하여 가중치를 적용한 예측모형이 동일한 가중치를 적용한 예측모형보다 높은 예측성과를 보여주었다. 또한 고객 반응예측 모형과 같이 실생활의 분류문제에서는 두 범주에 속하는 데이터의 수가 현격한 차이를 보이는 불균형 데이터가 대부분이다. 이러한 데이터의 불균형 문제는 기계학습 알고리즘의 성능을 저하시키는 요인으로 작용하며 본 연구에서 제안한 Weighted CBR이 불균형 환경에서도 안정적으로 적용할 수 있는지 검증하였다. 전체데이터에서 100개의 데이터를 무작위로 추출한 불균형 환경에서 100번 반복하여 예측성과를 비교해 본 결과 본 연구에서 제안한 Weighted CBR은 불균형 환경에서도 일관된 우수한 성과를 보여주었다.
최근 전세계적으로 R&D 네트워크 및 산학연 협력 등을 강화하고 있는 추세이다. 네트워크 및 협업연구 부문에 대한 지원이 증가하면 학제간 융합 연구를 통한 새로운 이론의 창출과 새로운 학문 사업 분야로의 확장 가능성을 높일 수 있다. 우리나라도 정부의 R&D 과제 수행을 통해 형성된 R&D 네트워크를 효율적으로 지원할 수 있는 전략의 필요성이 증대되고 있다. 그럼에도 불구하고 우리나라는 국가 R&D 사업 참여자에 대한 개별인력정보와 일반화된 통계 자료에만 의존하여 네트워크 관점에서의 정책은 미흡한 실정이다. 이에 따라 R&D 사업에 참여하는 각 주체들 간의 관계를 분석하고 산학연 R&D 네트워크를 기반으로 향후 발생할 수 있는 네트워크의 변화를 예측하고자 한다. R&D 네트워크 변화 예측을 위해 Common Neighbor 모형과 Jaccard's Coefficient 모형을 기반 모델로서 채택하고자 하며, 이들의 한계점을 보완하고 Link Prediction 정확도를 향상시킨 새로운 예측 모형을 제안하고 이들간의 비교분석 결과를 도출하고자 한다. 이와 같은 연구 결과는 향후 R&D 네트워크의 변화에 대한 효과적인 예측을 통해 선제적인 산학연 사업 지원 전략을 수립하고, 융합 R&D사업 등을 효과적으로 지원할 수 있는 국가 정책을 도모하기 위한 방안을 제시한다는 점에서 의의가 있다. 본 연구결과 가중치의 적용은 Common Neighbor 모형과 Jaccard's coefficient 모형 모두에서 긍정적인 성과를 나타냈는데 상대적으로는 가중치가 적용된 Common Neighbor 모형에서의 정확도가 더 개선된 것으로 도출되었다. 즉, Common Neighbor 모형에서는 4,136개 중 650개를 예측한 반면, 가중치를 적용한 Common Neighbor 모형에서는50개의 정답이 증가한 700개를 예측하는 효과를 보였다. 한편, 상대적으로 Jaccard 계수의 경우는 약간의 성능 개선은 있으나 그 차이가 미미한 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.