• 제목/요약/키워드: Weighted Prediction

검색결과 248건 처리시간 0.029초

피로수명예측을 위한 반응표면근사화와 절충의사결정문제의 응용 (Response Surface Approximation for Fatigue Life Prediction and Its Application to Compromise Decision Support Problem)

  • 백석흠;조석수;장득열;주원식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1187-1192
    • /
    • 2008
  • In this paper, a versatile multi-objective optimization concept for fatigue life prediction is introduced. Multi-objective decision making in engineering design refers to obtaining a preferred optimal solution in the context of conflicting design objectives. Compromise decision support problems are used to model engineering decisions involving multiple trade-offs. These methods typically rely on a summation of weighted attributes to accomplish trade-offs among competing objectives. This paper gives an interpretation of the decision parameters as governing both the relative importance of the attributes and the degree of compensation between them. The approach utilizes a response surface model, the compromise decision support problem, which is a multi-objective formulation based on goal programming. Examples illustrate the concepts and demonstrate their applicability.

  • PDF

빅데이터를 이용한 서울시 행복지수 분석 및 예측을 위한 실험 및 고찰 (Forthcoming Big Data in Smart Cities: Experiment for Machine Learning Based Happiness Estimation in Seoul City)

  • 신동윤;송유미
    • 한국BIM학회 논문집
    • /
    • 제7권1호
    • /
    • pp.28-35
    • /
    • 2017
  • Cities have complex system composed diverse activities. The activities in cities have complex relationship that creates diverse urban phenomena. Big Data is emerging technology in order to understand such complex network. This research aims to understand such relations by analysing the diverse city indexes. 28 indexes were collected in 25 of districts in Seoul city and analysed to find a weighted correlation. By defining the correlation values of certain years, it tries to predict the missed index values, "happiness" of each districts in other years. The result presents that the overall prediction accuracy 70.25%. However, for further discussion, the result is considered that this methods may not enough to use in practice, since the data has inconstant accuracy by different learning years.

직류 도시철도 변전소 수요전력 예측 (Power Demand Forecasting in the DC Urban Railway Substation)

  • 김한수;권오규
    • 전기학회논문지
    • /
    • 제63권11호
    • /
    • pp.1608-1614
    • /
    • 2014
  • Power demand forecasting is an important factor of the peak management. This paper deals with the 15 minutes ahead load forecasting problem in a DC urban railway system. Since supplied power lines to trains are connected with parallel, the load characteristics are too complex and highly non-linear. The main idea of the proposed method for the 15 minutes ahead prediction is to use the daily load similarity accounting for the load nonlinearity. An Euclidean norm with weighted factors including loads of the neighbor substation is used for the similar load selection. The prediction value is determinated by the sum of the similar load and the correction value. The correction has applied the neural network model. The feasibility of the proposed method is exemplified through some simulations applied to the actual load data of Incheon subway system.

회귀분석법에 의한 선박 소음 예측에 관한 연구 (Application of Multiple Regression Method to Prediction of Noise Level in Ship Cabins)

  • 김동해;정균양
    • 대한조선학회논문집
    • /
    • 제31권3호
    • /
    • pp.112-118
    • /
    • 1994
  • 본 연구에서는 선박의 초기 설계시에 비교적 간단한 자료로 각 선실에서의 소음수준을 예측하기 위한 방법으로 다중 회귀 분석법에 근거한 통계적 접근을 시도하였다. 선실에서의 소음수준에 영향을 미치는 여러 변수중에서, 선종, 재화중량, 주기관과 선실의 위치, 거주구 형상, 선실의 종류 및 프로펠러 스큐등이 최종 회귀식에 포함되었다. 회귀식의 추출시 사용하지 않은 6척 210개 선실에 대하여 검증을 실시한 결과, 77%의 선실이 3 dB 이내의 오차범위에 있음을 확인하였다.

  • PDF

완전연결계층 기반의 다중 모델을 이용한 화면내 예측 (Intra Prediction Using Multiple Models Based on Fully Connected Layer)

  • 김민재;문기화;박도현;권형진;김재곤
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 하계학술대회
    • /
    • pp.355-356
    • /
    • 2021
  • 딥러닝 기술과 하드웨어의 발전으로 다양한 분야에서 인공신경망과 관련한 연구가 활발히 진행되고 있다. 비디오 코덱 부분에서도 딥러닝 기술을 적용하는 부호화 기술이 많이 연구되고 있다. 본 논문은 최근 완료된 VVC 에 채택된 신경망 기반의 기술인 MIP(Matrix Weighted Intra Prediction)를 확장하여 보다 깊은 계층의 모델로 학습된 새로운 화면내 예측 모델을 제안한다. 기존 VVC 의 MIP 의 성능과 비교하기 위하여 기존 MIP 모델과 제안하는 다중완전연결계층(Fully Connected Layer) 화면내 예측 모델을 HEVC(High Efficiency Video Coding)에 적용하여 그 성능을 비교하였다. 실험결과 제안기법은 VVC MIP 대비 0.08 BD-rate 성능 향상을 보였다.

  • PDF

Estimation of the time-dependent AUC for cure rate model with covariate dependent censoring

  • Yang-Jin Kim
    • Communications for Statistical Applications and Methods
    • /
    • 제31권4호
    • /
    • pp.365-375
    • /
    • 2024
  • Diverse methods to evaluate the prediction model of a time to event have been proposed in the context of right censored data where all subjects are subject to be susceptible. A time-dependent AUC (area under curve) measures the predictive ability of a marker based on case group and control one which are varying over time. When a substantial portion of subjects are event-free, a population consists of a susceptible group and a cured one. An uncertain curability of censored subjects makes it difficult to define both case group and control one. In this paper, our goal is to propose a time-dependent AUC for a cure rate model when a censoring distribution is related with covariates. A class of inverse probability of censoring weighted (IPCW) AUC estimators is proposed to adjust the possible sampling bias. We evaluate the finite sample performance of the suggested methods with diverse simulation schemes and the application to the melanoma dataset is presented to compare with other methods.

구개상의 형태 변화가 발음에 미치는 영향에 관한 음향학적 연구 -/ㅅ/을 중심으로한 컴퓨터 분석- (AN ACOUSTIC STUDY IN RELATION TO THE SOUND DISTORTION BY THE ALTERATION OF PALATAL PLATE -FOCUSSED ON/ㅅ(s)/. BY COMPUTER ANALYSIS-)

  • 최창규;우이형;박남수
    • 대한치과보철학회지
    • /
    • 제27권1호
    • /
    • pp.83-102
    • /
    • 1989
  • This study was done to analyze the sound distortion, before and after insertion of the palatal palates. For this study, 4 healthy subjects (3 males and 1 female, each 24-year-old), who were born in Seoul were recruited from K university, and 3 type palatal plates were fabricated, each palatal thickness being 1.0mm, 2.5mm, dentoalveolar portion 2.5mm and elsewhere 1.0mm, named B,C,D-type repectively, and informants's sounds of /사(sa), 서(se), 소(so), 수(su), 스($s\.{+}$), 시(si)/ were recorded, without plate, and with palatal plates of different types, in succession. A series of analysis were adminstered through a 16 Bit IBM PC/AT using linear combination methods. These experiments were analyzed by the Cepstrum (Weighted and Euclidian), Log Area Ratio, Linear prediction correlation methods The findings led to the following conclusions : 1. It was confirmed that the same consonant, /ㅅ(s)/, variously distorted by the following vowel. 2. By and large, 시($s\.{+}$) was the most distorted in all conditions, and (sa), 소(so) were the least distorted in each condition. 3. There were no persistant correlation of the palatal plate types, and sound distortions of each informant were diverse with no regularities. 4. There were persistent correaltion to the Cepstrum (Weighted, Euclidian), Log Area Ratio. However, Linear prediction correlation has a different alteration pattern.

  • PDF

GIS 기반 확률론적 기법을 이용한 산사태 및 토석류 위험지역 분석 (Analysis of Landslide and Debris flow Hazard Area using Probabilistic Method in GIS-based)

  • 오채연;전계원
    • 한국안전학회지
    • /
    • 제27권6호
    • /
    • pp.172-177
    • /
    • 2012
  • In areas around Deoksan Li and Deokjeon Li, Inje Eup, Inje Gun, located between $38^{\circ}2^{\prime}55^{{\prime}{\prime}}N$ and $38^{\circ}5^{\prime}50^{{\prime}{\prime}}N$ in latitude and $128^{\circ}11^{\prime}20^{{\prime}{\prime}}E$ and $128^{\circ}18^{\prime}20^{{\prime}{\prime}}E$ in longitude, large-sized avalanche disasters occurred due to Typhoon Ewiniar in 2006. As a result, 29 people were dead or missing, along with a total of 37.25 billion won of financial loss(Gangwon Province, 2006). To evaluate such landslide and debris flow risk areas and their vulnerability, this study applied a technique called 'Weight of Evidence' based on GIS. Especially based on the overlay analysis of aerial images before the occurrence of landslides and debris flows in 2005 and after 2006, this study extracted 475 damage-occurrence areas in a shape of point, and established a DB by using such factors as topography, hydrologic, soil and forest physiognomy through GIS. For the prediction diagram of debris flow and landslide risk areas, this study calculated W+ and W-, the weighted values of each factor of Weight Evidence, while overlaying the weighted values of factors. Besides, the diagram showed about 76% in prediction accuracy, and it was also found to have a relatively high correlationship with the areas where such natural disasters actually occurred.

불균형 데이터 환경에서 변수가중치를 적용한 사례기반추론 기반의 고객반응 예측 (Response Modeling for the Marketing Promotion with Weighted Case Based Reasoning Under Imbalanced Data Distribution)

  • 김은미;홍태호
    • 지능정보연구
    • /
    • 제21권1호
    • /
    • pp.29-45
    • /
    • 2015
  • 고객반응 예측모형은 마케팅 프로모션을 제공할 목표고객을 효과적으로 선정할 수 있도록 하여 프로모션의 효과를 극대화 할 수 있도록 해준다. 오늘날과 같은 빅데이터 환경에서는 데이터 마이닝 기법을 적용하여 고객반응 예측모형을 구축하고 있으며 본 연구에서는 사례기반추론 기반의 고객반응 예측모형을 제시하였다. 일반적으로 사례기반추론 기반의 예측모형은 타 인공지능기법에 비해 성과가 낮다고 알려져 있으나 입력변수의 중요도에 따라 가중치를 상이하게 적용함으로써 예측성과를 향상시킬 수 있다. 본 연구에서는 프로모션에 대한 고객의 반응여부에 영향을 미치는 중요도에 따라 입력변수의 가중치를 산출하여 적용하였으며 동일한 가중치를 적용한 예측모형과의 성과를 비교하였다. 목욕세제 판매데이터를 사용하여 고객반응 예측모형을 개발하고 로짓모형의 계수를 적용하여 입력변수의 중요도에 따라 가중치를 산출하였다. 실증분석 결과 각 변수의 중요도에 기반하여 가중치를 적용한 예측모형이 동일한 가중치를 적용한 예측모형보다 높은 예측성과를 보여주었다. 또한 고객 반응예측 모형과 같이 실생활의 분류문제에서는 두 범주에 속하는 데이터의 수가 현격한 차이를 보이는 불균형 데이터가 대부분이다. 이러한 데이터의 불균형 문제는 기계학습 알고리즘의 성능을 저하시키는 요인으로 작용하며 본 연구에서 제안한 Weighted CBR이 불균형 환경에서도 안정적으로 적용할 수 있는지 검증하였다. 전체데이터에서 100개의 데이터를 무작위로 추출한 불균형 환경에서 100번 반복하여 예측성과를 비교해 본 결과 본 연구에서 제안한 Weighted CBR은 불균형 환경에서도 일관된 우수한 성과를 보여주었다.

산학연 협업 활성화를 위한 R&D 네트워크 연결 예측 연구 (Predicting link of R&D network to stimulate collaboration among education, industry, and research)

  • 박미연;이상헌;김국성;심홍매;김우주
    • 지능정보연구
    • /
    • 제21권3호
    • /
    • pp.37-52
    • /
    • 2015
  • 최근 전세계적으로 R&D 네트워크 및 산학연 협력 등을 강화하고 있는 추세이다. 네트워크 및 협업연구 부문에 대한 지원이 증가하면 학제간 융합 연구를 통한 새로운 이론의 창출과 새로운 학문 사업 분야로의 확장 가능성을 높일 수 있다. 우리나라도 정부의 R&D 과제 수행을 통해 형성된 R&D 네트워크를 효율적으로 지원할 수 있는 전략의 필요성이 증대되고 있다. 그럼에도 불구하고 우리나라는 국가 R&D 사업 참여자에 대한 개별인력정보와 일반화된 통계 자료에만 의존하여 네트워크 관점에서의 정책은 미흡한 실정이다. 이에 따라 R&D 사업에 참여하는 각 주체들 간의 관계를 분석하고 산학연 R&D 네트워크를 기반으로 향후 발생할 수 있는 네트워크의 변화를 예측하고자 한다. R&D 네트워크 변화 예측을 위해 Common Neighbor 모형과 Jaccard's Coefficient 모형을 기반 모델로서 채택하고자 하며, 이들의 한계점을 보완하고 Link Prediction 정확도를 향상시킨 새로운 예측 모형을 제안하고 이들간의 비교분석 결과를 도출하고자 한다. 이와 같은 연구 결과는 향후 R&D 네트워크의 변화에 대한 효과적인 예측을 통해 선제적인 산학연 사업 지원 전략을 수립하고, 융합 R&D사업 등을 효과적으로 지원할 수 있는 국가 정책을 도모하기 위한 방안을 제시한다는 점에서 의의가 있다. 본 연구결과 가중치의 적용은 Common Neighbor 모형과 Jaccard's coefficient 모형 모두에서 긍정적인 성과를 나타냈는데 상대적으로는 가중치가 적용된 Common Neighbor 모형에서의 정확도가 더 개선된 것으로 도출되었다. 즉, Common Neighbor 모형에서는 4,136개 중 650개를 예측한 반면, 가중치를 적용한 Common Neighbor 모형에서는50개의 정답이 증가한 700개를 예측하는 효과를 보였다. 한편, 상대적으로 Jaccard 계수의 경우는 약간의 성능 개선은 있으나 그 차이가 미미한 것으로 나타났다.