• Title/Summary/Keyword: Weighted Prediction

Search Result 248, Processing Time 0.036 seconds

Time-aware Item-based Collaborative Filtering with Similarity Integration

  • Lee, Soojung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.7
    • /
    • pp.93-100
    • /
    • 2022
  • In the era of information overload on the Internet, the recommendation system, which is an indispensable function, is a service that recommends products that a user may prefer, and has been successfully provided in various commercial sites. Recently, studies to reflect the rating time of items to improve the performance of collaborative filtering, a representative recommendation technique, are active. The core idea of these studies is to generate the recommendation list by giving an exponentially lower weight to the items rated in the past. However, this has a disadvantage in that a time function is uniformly applied to all items without considering changes in users' preferences according to the characteristics of the items. In this study, we propose a time-aware collaborative filtering technique from a completely different point of view by developing a new similarity measure that integrates the change in similarity values between items over time into a weighted sum. As a result of the experiment, the prediction performance and recommendation performance of the proposed method were significantly superior to the existing representative time aware methods and traditional methods.

Research on Determine Buying and Selling Timing of US Stocks Based on Fear & Greed Index (Fear & Greed Index 기반 미국 주식 단기 매수와 매도 결정 시점 연구)

  • Sunghyuck Hong
    • Journal of Industrial Convergence
    • /
    • v.21 no.1
    • /
    • pp.87-93
    • /
    • 2023
  • Determining the timing of buying and selling in stock investment is one of the most important factors to increase the return on stock investment. Buying low and selling high makes a profit, but buying high and selling low makes a loss. The price is determined by the quantity of buying and selling, which determines the price of a stock, and buying and selling is also related to corporate performance and economic indicators. The fear and greed index provided by CNN uses seven factors, and by assigning weights to each element, the weighted average defined as greed and fear is calculated on a scale between 0 and 100 and published every day. When the index is close to 0, the stock market sentiment is fearful, and when the index is close to 100, it is greedy. Therefore, we analyze the trading criteria that generate the maximum return when buying and selling the US S&P 500 index according to CNN fear and greed index, suggesting the optimal buying and selling timing to suggest a way to increase the return on stock investment.

Improvement of recommendation system using attribute-based opinion mining of online customer reviews

  • Misun Lee;Hyunchul Ahn
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.259-266
    • /
    • 2023
  • In this paper, we propose an algorithm that can improve the accuracy performance of collaborative filtering using attribute-based opinion mining (ABOM). For the experiment, a total of 1,227 online consumer review data about smartphone apps from domestic smartphone users were used for analysis. After morpheme analysis using the KKMA (Kkokkoma) analyzer and emotional word analysis using KOSAC, attribute extraction is performed using LDA topic modeling, and the topic modeling results for each weighted review are used to add up the ratings of collaborative filtering and the sentiment score. MAE, MAPE, and RMSE, which are statistical model performance evaluations that calculate the average accuracy error, were used. Through experiments, we predicted the accuracy of online customers' app ratings (APP_Score) by combining traditional collaborative filtering among the recommendation algorithms and the attribute-based opinion mining (ABOM) technique, which combines LDA attribute extraction and sentiment analysis. As a result of the analysis, it was found that the prediction accuracy of ratings using attribute-based opinion mining CF was better than that of ratings implementing traditional collaborative filtering.

Radiomics of Non-Contrast-Enhanced T1 Mapping: Diagnostic and Predictive Performance for Myocardial Injury in Acute ST-Segment-Elevation Myocardial Infarction

  • Quanmei Ma;Yue Ma;Tongtong Yu;Zhaoqing Sun;Yang Hou
    • Korean Journal of Radiology
    • /
    • v.22 no.4
    • /
    • pp.535-546
    • /
    • 2021
  • Objective: To evaluate the feasibility of texture analysis on non-contrast-enhanced T1 maps of cardiac magnetic resonance (CMR) imaging for the diagnosis of myocardial injury in acute myocardial infarction (MI). Materials and Methods: This study included 68 patients (57 males and 11 females; mean age, 55.7 ± 10.5 years) with acute ST-segment-elevation MI who had undergone 3T CMR after a percutaneous coronary intervention. Forty patients of them also underwent a 6-month follow-up CMR. The CMR protocol included T2-weighted imaging, T1 mapping, rest first-pass perfusion, and late gadolinium enhancement. Radiomics features were extracted from the T1 maps using open-source software. Radiomics signatures were constructed with the selected strongest features to evaluate the myocardial injury severity and predict the recovery of left ventricular (LV) longitudinal systolic myocardial contractility. Results: A total of 1088 segments of the acute CMR images were analyzed; 103 (9.5%) segments showed microvascular obstruction (MVO), and 557 (51.2%) segments showed MI. A total of 640 segments were included in the 6-month follow-up analysis, of which 160 (25.0%) segments showed favorable recovery of LV longitudinal systolic myocardial contractility. Combined radiomics signature and T1 values resulted in a higher diagnostic performance for MVO compared to T1 values alone (area under the curve [AUC] in the training set; 0.88, 0.72, p = 0.031: AUC in the test set; 0.86, 0.71, p = 0.002). Combined radiomics signature and T1 values also provided a higher predictive value for LV longitudinal systolic myocardial contractility recovery compared to T1 values (AUC in the training set; 0.76, 0.55, p < 0.001: AUC in the test set; 0.77, 0.60, p < 0.001). Conclusion: The combination of radiomics of non-contrast-enhanced T1 mapping and T1 values could provide higher diagnostic accuracy for MVO. Radiomics also provides incremental value in the prediction of LV longitudinal systolic myocardial contractility at six months.

Prediction of East Asian Brain Age using Machine Learning Algorithms Trained With Community-based Healthy Brain MRI

  • Chanda Simfukwe;Young Chul Youn
    • Dementia and Neurocognitive Disorders
    • /
    • v.21 no.4
    • /
    • pp.138-146
    • /
    • 2022
  • Background and Purpose: Magnetic resonance imaging (MRI) helps with brain development analysis and disease diagnosis. Brain volumes measured from different ages using MRI provides useful information in clinical evaluation and research. Therefore, we trained machine learning models that predict the brain age gap of healthy subjects in the East Asian population using T1 brain MRI volume images. Methods: In total, 154 T1-weighted MRIs of healthy subjects (55-83 years of age) were collected from an East Asian community. The information of age, gender, and education level was collected for each participant. The MRIs of the participants were preprocessed using FreeSurfer(https://surfer.nmr.mgh.harvard.edu/) to collect the brain volume data. We trained the models using different supervised machine learning regression algorithms from the scikit-learn (https://scikit-learn.org/) library. Results: The trained models comprised 19 features that had been reduced from 55 brain volume labels. The algorithm BayesianRidge (BR) achieved a mean absolute error (MAE) and r squared (R2) of 3 and 0.3 years, respectively, in predicting the age of the new subjects compared to other regression methods. The results of feature importance analysis showed that the right pallidum, white matter hypointensities on T1-MRI scans, and left hippocampus comprise some of the essential features in predicting brain age. Conclusions: The MAE and R2 accuracies of the BR model predicting brain age gap in the East Asian population showed that the model could reduce the dimensionality of neuroimaging data to provide a meaningful biomarker for individual brain aging.

Improved AR-FGS Coding Scheme for Scalable Video Coding (확장형 비디오 부호화(SVC)의 AR-FGS 기법에 대한 부호화 성능 개선 기법)

  • Seo, Kwang-Deok;Jung, Soon-Heung;Kim, Jin-Soo;Kim, Jae-Gon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12C
    • /
    • pp.1173-1183
    • /
    • 2006
  • In this paper, we propose an efficient method for improving visual quality of AR-FGS (Adaptive Reference FGS) which is adopted as a key scheme for SVC (Scalable Video Coding) or H.264 scalable extension. The standard FGS (Fine Granularity Scalability) adopts AR-FGS that introduces temporal prediction into FGS layer by using a high quality reference signal which is constructed by the weighted average between the base layer reconstructed imageand enhancement reference to improve the coding efficiency in the FGS layer. However, when the enhancement stream is truncated at certain bitstream position in transmission, the rest of the data of the FGS layer will not be available at the FGS decoder. Thus the most noticeable problem of using the enhancement layer in prediction is the degraded visual quality caused by drifting because of the mismatch between the reference frame used by the FGS encoder and that by the decoder. To solve this problem, we exploit the principle of cyclical block coding that is used to encode quantized transform coefficients in a cyclical manner in the FGS layer. Encoding block coefficients in a cyclical manner places 'higher-value' bits earlier in the bitstream. The quantized transform coefficients included in the ealry coding cycle of cyclical block coding have higher probability to be correctly received and decoded than the others included in the later cycle of the cyclical block coding. Therefore, we can minimize visual quality degradation caused by bitstream truncation by adjusting weighting factor to control the contribution of the bitstream produced in each coding cycle of cyclical block coding when constructing the enhancement layer reference frame. It is shown by simulations that the improved AR-FGS scheme outperforms the standard AR-FGS by about 1 dB in maximum in the reconstructed visual quality.

Response Prediction after Neoadjuvant Chemotherapy for Colon Cancer Using CT Tumor Regression Grade: A Preliminary Study (대장암 환자의 수술 전 항암화학요법의 반응을 CT 종양퇴행등급을 이용한 반응 예측: 예비 연구)

  • Hwan Ju Je;Seung Hyun Cho;Hyun Seok Oh;An Na Seo;Byung Geon Park;So Mi Lee;See Hyung Kim;Gab Chul Kim;Hunkyu Ryeom;Gyu-Seog Choi
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.5
    • /
    • pp.1094-1109
    • /
    • 2023
  • Purpose To investigate whether CT-based tumor regression grade (ctTRG) can be used to predict the response to neoadjuvant chemotherapy (NAC) in colon cancer. Materials and Methods A total of 53 patients were enrolled. Two radiologists independently assessed the ctTRG using the length, thickness, layer pattern, and luminal and extraluminal appearance of the tumor. Changes in tumor volume were also analyzed using the 3D Slicer software. We evaluated the association between pathologic TRG (pTRG) and ctTRG. Patients with Rödel's TRG of 2, 3, or 4 were classified as responders. In terms of predicting responder and pathologic complete remission (pCR), receiver operating characteristic was compared between ctTRG and tumor volume change. Results There was a moderate correlation between ctTRG and pTRG (ρ = -0.540, p < 0.001), and the interobserver agreement was substantial (weighted κ = 0.672). In the prediction of responder, there was no significant difference between ctTRG and volumetry (Az = 0.749, criterion: ctTRG ≤ 3 for ctTRG, Az = 0.794, criterion: ≤ -27.1% for volume, p = 0.53). Moreover, there was no significant difference between the two methods in predicting pCR (p = 0.447). Conclusion ctTRG might predict the response to NAC in colon cancer. The diagnostic performance of ctTRG was comparable to that of CT volumetry.

Tumor Margin Infiltration in Soft Tissue Sarcomas: Prediction Using 3T MRI Texture Analysis (연조직 육종의 종양 가장자리 침윤: 3T 자기공명영상 텍스처 분석을 통한 예측)

  • Minji Kim;Won-Hee Jee;Youngjun Lee;Ji Hyun Hong;Chan Kwon Jung;Yang-Guk Chung;So-Yeon Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.1
    • /
    • pp.112-126
    • /
    • 2022
  • Purpose To determine the value of 3 Tesla (T) MRI texture analysis for predicting tumor margin infiltration in soft tissue sarcomas. Materials and Methods Thirty-one patients who underwent 3T MRI and had a pathologically confirmed diagnosis of soft tissue sarcoma were included in this study. Margin infiltration on pathology was used as the gold standard. Texture analysis of soft tissue sarcomas was performed on axial T1-weighted images (WI) and T2WI, fat-suppressed contrast-enhanced (CE) T1WI, diffusion-weighted images (DWI) with b-value of 800 s/mm2, and apparent diffusion coefficient (ADC) was mapped. Quantitative parameters were compared between sarcomas with infiltrative margins and those with circumscribed margins. Results Among the 31 patients with soft tissue sarcomas, 23 showed tumor margin infiltration on pathology. There were significant differences in kurtosis with the spatial scaling factor (SSF) of 0 and 6 on T1WI, kurtosis (SSF, 0) on CE-T1WI, skewness (SSF, 0) on DWI, and skewness (SSF, 2, 4) on ADC between sarcomas with infiltrative margins and those with circumscribed margins (p ≤ 0.046). The area under the receiver operating characteristic curve based on MR texture features for identification of infiltrative tumor margins was 0.951 (p < 0.001). Conclusion MR texture analysis is reliable and accurate for the prediction of infiltrative margins of soft tissue sarcomas.

Quantitative Analysis of Carbohydrate, Protein, and Oil Contents of Korean Foods Using Near-Infrared Reflectance Spectroscopy (근적외 분광분석법을 이용한 국내 유통 식품 함유 탄수화물, 단백질 및 지방의 정량 분석)

  • Song, Lee-Seul;Kim, Young-Hak;Kim, Gi-Ppeum;Ahn, Kyung-Geun;Hwang, Young-Sun;Kang, In-Kyu;Yoon, Sung-Won;Lee, Junsoo;Shin, Ki-Yong;Lee, Woo-Young;Cho, Young Sook;Choung, Myoung-Gun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.3
    • /
    • pp.425-430
    • /
    • 2014
  • Foods contain various nutrients such as carbohydrates, protein, oil, vitamins, and minerals. Among them, carbohydrates, protein, and oil are the main constituents of foods. Usually, these constituents are analyzed by the Kjeldahl and Soxhlet method and so on. However, these analytical methods are complex, costly, and time-consuming. Thus, this study aimed to rapidly and effectively analyze carbohydrate, protein, and oil contents with near-infrared reflectance spectroscopy (NIRS). A total of 517 food samples were measured within the wavelength range of 400 to 2,500 nm. Exactly 412 food calibration samples and 162 validation samples were used for NIRS equation development and validation, respectively. In the NIRS equation of carbohydrates, the most accurate equation was obtained under 1, 4, 5, 1 (1st derivative, 4 nm gap, 5 points smoothing, and 1 point second smoothing) math treatment conditions using the weighted MSC (multiplicative scatter correction) scatter correction method with MPLS (modified partial least square) regression. In the case of protein and oil, the best equation were obtained under 2, 5, 5, 3 and 1, 1, 1, 1 conditions, respectively, using standard MSC and standard normal variate only scatter correction methods with MPLS regression. Calibrations of these NIRS equations showed a very high coefficient of determination in calibration ($R^2$: carbohydrates, 0.971; protein, 0.974; oil, 0.937) and low standard error of calibration (carbohydrates, 4.066; protein, 1.080; oil, 1.890). Optimal equation conditions were applied to a validation set of 162 samples. Validation results of these NIRS equations showed a very high coefficient of determination in prediction ($r^2$: carbohydrates, 0.987; protein, 0.970; oil, 0.947) and low standard error of prediction (carbohydrates, 2.515; protein, 1.144; oil, 1.370). Therefore, these NIRS equations can be applicable for determination of carbohydrates, proteins, and oil contents in various foods.

The Fatigue Life Evaluation of Continuous Welded Rail on a Concrete Track in an Urban Railway (도시철도 콘크리트궤도 장대레일의 피로수명 평가)

  • Kong, Sung-Yong;Sung, Deok-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.3
    • /
    • pp.193-200
    • /
    • 2014
  • In this study, fatigue tests on existing continuous welded rail (CWR) on a concrete track were carried out. Based on the test results, a S-N curve expressing the remaining life of the CWR at a fracture probability of 50% was obtained using weighted probit analysis suitable for small-sample fatigue data sets. As rails had different histories in terms of accumulated passing tonnage, the test data were corrected to average out the accumulated passing tonnage. The remaining service life for the CWR on the concrete track in an urban railway was estimated using the prediction equation for the bending stress of rail developed in the past to estimate rail base bending stress and taking the surface irregularities into consideration. Estimating the remaining service life of the CWR in an urban railway showed that the rail replacement period could be extended over 200MGT. In addition, comparing the concrete track to the ballast track, the fatigue life of rail was analyzed as approximately 300MGT higher than. Therefore, the rail replacement criteria needs to distinguish between the ballast track and the concrete track, and not the criteria needs to be changed as a target for the maintenance, although it is necessary to remove longitudinal rail surface irregularities at welds by grinding.