Acknowledgement
We would like to thank the Department of Neurology at Chung-Ang University Hospital for providing the tools to make this research successful.
References
- Yeung WJ, Lee Y. Aging in East Asia: new findings on retirement, health, and well-being. J Gerontol B Psychol Sci Soc Sci 2022;77:589-591. https://doi.org/10.1093/geronb/gbab055
- Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL, et al. Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol 2019;15:565-581. https://doi.org/10.1038/s41582-019-0244-7
- Cristea M, Noja GG, Stefea P, Sala AL. The impact of population aging and public health support on EU labor markets. Int J Environ Res Public Health 2020;17:1439.
- Tocchio S, Kline-Fath B, Kanal E, Schmithorst VJ, Panigrahy A. MRI evaluation and safety in the developing brain. Semin Perinatol 2015;39:73-104. https://doi.org/10.1053/j.semperi.2015.01.002
- Anaturk M, Kaufmann T, Cole JH, Suri S, Griffanti L, Zsoldos E, et al. Prediction of brain age and cognitive age: quantifying brain and cognitive maintenance in aging. Hum Brain Mapp 2021;42:1626-1640. https://doi.org/10.1002/hbm.25316
- Lancaster J, Lorenz R, Leech R, Cole JH. Bayesian optimization for neuroimaging pre-processing in brain age classification and prediction. Front Aging Neurosci 2018;10:28.
- Hwang I, Yeon EK, Lee JY, Yoo RE, Kang KM, Yun TJ, et al. Prediction of brain age from routine T2-weighted spin-echo brain magnetic resonance images with a deep convolutional neural network. Neurobiol Aging 2021;105:78-85. https://doi.org/10.1016/j.neurobiolaging.2021.04.015
- Sarker IH. Machine learning: algorithms, real-world applications and research directions. SN Comput Sci 2021;2:160.
- Beheshti I, Ganaie MA, Paliwal V, Rastogi A, Razzak I, Tanveer M. Predicting brain age using machine learning algorithms: a comprehensive evaluation. IEEE J Biomed Health Inform 2022;26:1432-1440. https://doi.org/10.1109/JBHI.2021.3083187
- Pandis N. Linear regression. Am J Orthod Dentofacial Orthop 2016;149:431-434. https://doi.org/10.1016/j.ajodo.2015.11.019
- Martin-Guerrero JD, Camps-Valls G, Soria-Olivas E, Serrano-Lopez AJ, Perez-Ruixo JJ, Jimenez-Torres NV. Dosage individualization of erythropoietin using a profile-dependent support vector regression. IEEE Trans Biomed Eng 2003;50:1136-1142. https://doi.org/10.1109/TBME.2003.816084
- Li X, Li W, Xu Y. Human age prediction based on DNA methylation using a gradient boosting regressor. Genes (Basel) 2018;9:424.
- da Silva FA, Viana AP, Correa CC, Santos EA, de Oliveira JA, Andrade JD, et al. Bayesian ridge regression shows the best fit for SSR markers in Psidium guajava among Bayesian models. Sci Rep 2021;11:13639.
- Ly M, Yu GZ, Karim HT, Muppidi NR, Mizuno A, Klunk WE, et al. Improving brain age prediction models: incorporation of amyloid status in Alzheimer's disease. Neurobiol Aging 2020;87:44-48. https://doi.org/10.1016/j.neurobiolaging.2019.11.005
- Wang J, Knol MJ, Tiulpin A, Dubost F, de Bruijne M, Vernooij MW, et al. Gray matter age prediction as a biomarker for risk of dementia. Proc Natl Acad Sci U S A 2019;116:21213-21218. https://doi.org/10.1073/pnas.1902376116
- Paul H, Simon J, Gilles W, Thomas C. Brain age prediction of healthy subjects on anatomic MRI with deep learning: going beyond with an "explainable AI" mindset. bioRxiv 2018 Sep 10.
- Aycheh HM, Seong JK, Shin JH, Na DL, Kang B, Seo SW, et al. Biological brain age prediction using cortical thickness data: a large scale cohort study. Front Aging Neurosci 2018;10:252.
- Lidauer K, Pulli EP, Copeland A, Silver E, Kumpulainen V, Hashempour N, et al. Subcortical and hippocampal brain segmentation in 5-year-old children: validation of FSL-FIRST and FreeSurfer against manual segmentation. Eur J Neurosci 2022.56:4619-4641. https://doi.org/10.1111/ejn.15761
- Fujihara K, Takei Y. FreeSurfer as a platform for associating brain structure with function. Brain Nerve 2018.70:841-848.
- Gomez-Ramirez J, Fernandez-Blazquez MA, Gonzalez-Rosa JJ. Prediction of chronological age in healthy elderly subjects with machine learning from MRI brain segmentation and cortical parcellation. Brain Sci 2022;12:579.
- Hong J, Feng Z, Wang SH, Peet A, Zhang YD, Sun Y, et al. Brain age prediction of children using routine brain MR images via deep learning. Front Neurol 2020;11:584682.
- Cole JH, Franke K. Predicting age using neuroimaging: innovative brain ageing biomarkers. Trends Neurosci 2017;40:681-690.