• Title/Summary/Keyword: Weighted Prediction

Search Result 243, Processing Time 0.03 seconds

Numerical Study for 3D Turbulent Flow in High Incidence Compressor Cascade (고입사각 압축기 익렬내의 3차원 난류유동에 관한 수치적 연구)

  • 안병진;정기호;김귀순;임진식;김유일
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.35-40
    • /
    • 2002
  • A numerical analysis based on two-dimensional and three-dimensional incompressible Navier-Stokes equations has been carried out for double-circular-arc compressor cascades and the results are compared with available experimental data at various incidence angles. The 2-D and 3-D computational codes based on SIMPLE algorithm adopt pressure weighted interpolation method for non-staggered grid and hybrid scheme for the convertive terms. Turbulence modeling is very important for prediction of cascade flows, which are extremely complex with separation and reattachment by adverse pressure gradient. In this paper k-$\varepsilon$ turbulence model with wall function is used to increase efficiency of computation times.

  • PDF

Kalman Filter-Based Ensemble Timescale with 3- Hydrogen Masers

  • Lee, Ho Seong;Kwon, Taeg Yong;Lee, Young Kyu;Yang, Sung-hoon;Yu, Dai-Hyuk
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.3
    • /
    • pp.261-272
    • /
    • 2020
  • A Kalman filter algorithm is used for the generation of an ensemble timescale with three hydrogen masers maintained in KRISS. Allan deviation curves of three pairs of clocks were obtained by a three-cornered hat method and were used as reference curves for determination of parameters of the Kalman filter-based timescale. The ensemble timescale equation of a 3-clock system was established, and the clocks' phases estimated by the Kalman filter were used as the prediction time of each clock in the equation. The weight of each clock was determined inversely proportional to the Allan variance calculated with the clocks' phases. The Allan deviation of the weighted mean was 1.2×10-16 at the averaging time of 57,600 s. However when we made fine adjustments of the clocks' weight, the minimum Allan deviation of 2×10-17 was obtained. To find out the reason of the great improvement in the frequency stability, additional researches are in progress theoretically and experimentally.

Hybrid Approach-Based Sparse Gaussian Kernel Model for Vehicle State Determination during Outage-Free and Complete-Outage GPS Periods

  • Havyarimana, Vincent;Xiao, Zhu;Wang, Dong
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.579-588
    • /
    • 2016
  • To improve the ability to determine a vehicle's movement information even in a challenging environment, a hybrid approach called non-Gaussian square rootunscented particle filtering (nGSR-UPF) is presented. This approach combines a square root-unscented Kalman filter (SR-UKF) and a particle filter (PF) to determinate the vehicle state where measurement noises are taken as a finite Gaussian kernel mixture and are approximated using a sparse Gaussian kernel density estimation method. During an outage-free GPS period, the updated mean and covariance, computed using SR-UKF, are estimated based on a GPS observation update. During a complete GPS outage, nGSR-UPF operates in prediction mode. Indeed, because the inertial sensors used suffer from a large drift in this case, SR-UKF-based importance density is then responsible for shifting the weighted particles toward the high-likelihood regions to improve the accuracy of the vehicle state. The proposed method is compared with some existing estimation methods and the experiment results prove that nGSR-UPF is the most accurate during both outage-free and complete-outage GPS periods.

Numerical Study for 3D Turbulent Flow in High Incidence Compressor Cascade (고입사각 압축기 익렬 내의 3차원 난류유동에 관한 수치적 연구)

  • 안병진;정기호;김귀순;임진식;김유일
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.3
    • /
    • pp.29-36
    • /
    • 2002
  • A numerical analysis based on two-dimensional and three-dimensional incompressible Wavier-Stokes equations has been carried out for double-circular-arc compressor cascades and the results are compared with available experimental data at various incidence angles. The 2-D and 3-D computational codes based on SIMPLE algorithm adopt pressure weighted interpolation method for non-staggered grid and hybrid scheme for the convective terms. Turbulence modeling is very important for prediction of cascade flows, which are extremely complex with separation and reattachment by adverse pressure gradient. Considering computation times, $\kappa$-$\varepsilon$ turbulence model with wall function is used.

Frequency Band Selection Exited Linear Prediction Wideband Speech/Audio Coding Using SBR (SBR을 이용한 주파수 밴드선택 여기 선형예측 광대역 음성/오디오 부호화)

  • Jang, Sunghoon;Lee, Insung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.6
    • /
    • pp.556-562
    • /
    • 2013
  • This paper is aimed to improve performance of Band-Selection speech/audio Coder reconstucted band spectrum that is not sent by the comfort noise. To improve the performance, we use the Spectral Band Replication(SBR) technique instead of substitution of Comfort noise. To synthesize SBR signal, the SBR algorithm is referenced in selected signals and the spectrum synthesized by SBR is injected to non-selected band. Each sub-band spectrum has been energy-weighted by real audio signal. We propose the enhanced the Band-Selection Coder that utilizes synthesized SBR signal from selected signal instead of comfort noise.

A Study on the Development Strategy of Artificial Intelligence Technology Using Multi-Attribute Weighted Average Method (다요소 가중 평균법을 이용한 인공지능 기술 개발전략 연구)

  • Chang, Hae Gak;Choi, Il Young;Kim, Jae Kyeong
    • Journal of Information Technology Services
    • /
    • v.19 no.2
    • /
    • pp.93-107
    • /
    • 2020
  • Recently, artificial intelligence (AI) technologies has been widely used in various fields such as finance, and distribution. Accordingly, Korea has also announced its AI R&D strategy for the realization of i-Korea 4.0 in May 2018. However, Korea's AI technology is inferior to major competitors such as the US, Canada, and Japan Therefore, in order to cope with the 4th industrial revolution, it is necessary to allocate AI R&D budgets efficiently through selection and concentration so as to gain competitive advantage under a limited budget. In this study, the importance of each AI technology was evaluated in multi-dimensional way through the questionnaire of expert group using the evaluation index derived from the literature review From the results of this study, we draw the following implication. In order to successfully establish the AI technology development strategies, it is necessary to prioritize the cognitive computing technology that has great market growth potential, ripple effect of technology development, and the urgency of technology development according to the principle of selection and concentration. To this end, it is necessary to find creative ideas, manage assessments, converge multidisciplinary systems and strengthen core competencies. In addition, since AI technology has a large impact on socioeconomic development, it is necessary to comprehensively grasp and manage scientific and technological regulations in order to systematically promote AI technology development.

Semi-Supervised Recursive Learning of Discriminative Mixture Models for Time-Series Classification

  • Kim, Minyoung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.186-199
    • /
    • 2013
  • We pose pattern classification as a density estimation problem where we consider mixtures of generative models under partially labeled data setups. Unlike traditional approaches that estimate density everywhere in data space, we focus on the density along the decision boundary that can yield more discriminative models with superior classification performance. We extend our earlier work on the recursive estimation method for discriminative mixture models to semi-supervised learning setups where some of the data points lack class labels. Our model exploits the mixture structure in the functional gradient framework: it searches for the base mixture component model in a greedy fashion, maximizing the conditional class likelihoods for the labeled data and at the same time minimizing the uncertainty of class label prediction for unlabeled data points. The objective can be effectively imposed as individual mixture component learning on weighted data, hence our mixture learning typically becomes highly efficient for popular base generative models like Gaussians or hidden Markov models. Moreover, apart from the expectation-maximization algorithm, the proposed recursive estimation has several advantages including the lack of need for a pre-determined mixture order and robustness to the choice of initial parameters. We demonstrate the benefits of the proposed approach on a comprehensive set of evaluations consisting of diverse time-series classification problems in semi-supervised scenarios.

Digital Video Steganalysis Based on a Spatial Temporal Detector

  • Su, Yuting;Yu, Fan;Zhang, Chengqian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.360-373
    • /
    • 2017
  • This paper presents a novel digital video steganalysis scheme against the spatial domain video steganography technology based on a spatial temporal detector (ST_D) that considers both spatial and temporal redundancies of the video sequences simultaneously. Three descriptors are constructed on XY, XT and YT planes respectively to depict the spatial and temporal relationship between the current pixel and its adjacent pixels. Considering the impact of local motion intensity and texture complexity on the histogram distribution of three descriptors, each frame is segmented into non-overlapped blocks that are $8{\times}8$ in size for motion and texture analysis. Subsequently, texture and motion factors are introduced to provide reasonable weights for histograms of the three descriptors of each block. After further weighted modulation, the statistics of the histograms of the three descriptors are concatenated into a single value to build the global description of ST_D. The experimental results demonstrate the great advantage of our features relative to those of the rich model (RM), the subtractive pixel adjacency model (SPAM) and subtractive prediction error adjacency matrix (SPEAM), especially for compressed videos, which constitute most Internet videos.

Assessment of Vulnerability to Climate Change in Coastal and Offshore Fisheries of Korea under the RCP Scenarios: for the South Coast Region (RCP 시나리오를 적용한 한국 연근해어업의 기후변화 취약성 평가: 남해안 지역을 대상으로)

  • Kim, Bong-Tae;Lee, Joon-Soo;Suh, Young-Sang
    • Ocean and Polar Research
    • /
    • v.40 no.1
    • /
    • pp.37-48
    • /
    • 2018
  • The purpose of this study is to assess the climate change vulnerability of coastal and offshore fisheries in the South Sea of Korea using the RCP scenarios. Based on the vulnerability defined by IPCC, the indicator-based method was applied. Exposure indicator was calculated through weighted sum of the sea temperature and salinity forecasted by National Institute of Fisheries Science, and the weights were obtained from the time-space distribution of each fisheries. Sensitivity indicator was determined by applying the catch proportion of fisheries to the sensitivity of fish species. The adaptive capacity was measured by survey of fisheries which represent the ability of the fishermen well. As a result of summarizing the above indicators, vulnerability of coastal fisheries is higher than offshore fisheries. This shows that measures against coastal fisheries are needed. In addition, the results of each scenario are somewhat different, so it is considered that accurate prediction of climate change is important for adaptation measures.

A Study of Non-Intrusive Appliance Load Identification Algorithm using Complex Sensor Data Processing Algorithm (복합 센서 데이터 처리 알고리즘을 이용한 비접촉 가전 기기 식별 알고리즘 연구)

  • Chae, Sung-Yoon;Park, Jinhee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.2
    • /
    • pp.199-204
    • /
    • 2017
  • In this study, we present a home appliance load identification algorithm. The algorithm utilizes complex sensory data in order to improve the existing NIALM using total power usage information. We define the influence graph between the appliance status and the measured sensor data. The device identification prediction result is calculated as the weighted sum of the predicted value of the sensor data processing algorithm and the predicted value based on the total power usage. We evaluate proposed algorithm to compare appliance identification accuracy with the existing NIALM algorithm.