• Title/Summary/Keyword: Weighted Least Square

Search Result 172, Processing Time 0.022 seconds

An Optimal Correction Balancing of A High-Speed Flexible Rotor (최적화기법을 이용한 고속 탄성회전체의 밸런싱)

  • 이용복;이동수;최동훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1402-1410
    • /
    • 1995
  • An influence coefficient method with an optimal correction balancing algorithm is developed for balancing a high-speed flexible rotor system. Conventional flexible balancing algorithms such as least square and weighted least square algorithms may not satisfy allowable residual vibration levels in certain speed ranges, while the optimal correction balancing method can be more effective in controlling vibration levels in a target speed. Related analyses were reviewed and applied to a test rig to show the effectiveness of the optimal correction balancing method.

A Weighted Least Square Method for Optimization of Thinned Sensor Arrays (희소어레이의 최적화를 위한 계수 최소 자승 방법)

  • 장병건
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.78-83
    • /
    • 1999
  • This paper concerns a least square method for pattern optimization of a thinned sensor array in which the squared error between a desired pattern and a synthesized one is minimized. A weighting function is applied in the function with respect to the array visual range for a symmetric and asymmetric configuration for sensor spacing. An exponential weighting function is proposed to control the sidelobes efficiently around the mainbeam and to generate a uniform sidelobe. The resulting pattern may be employed to eliminate incoming interferences distributed uniformly around the array visual range.

  • PDF

Further Results on Piecewise Constant Hazard Functions in Aalen's Additive Risk Model

  • Uhm, Dai-Ho;Jun, Sung-Hae
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.3
    • /
    • pp.403-413
    • /
    • 2012
  • The modifications suggested in Uhm et al. (2011) are studied using a partly parametric version of Aalen's additive risk model. A follow-up time period is partitioned into intervals, and hazard functions are estimated as a piecewise constant in each interval. A maximum likelihood estimator by iteratively reweighted least squares and variance estimates are suggested based on the model as well as evaluated by simulations using mean square error and a coverage probability, respectively. In conclusion the modifications are needed when there are a small number of uncensored deaths in an interval to estimate the piecewise constant hazard function.

Robust Self-Tuning Regulator without Persistent Excitation (지속여기 조건이 없는 강인한 자조 안정기)

  • 김영철;이철희;양흥석
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.11
    • /
    • pp.1207-1218
    • /
    • 1990
  • The lack of persistent excitation (PE) can be the reason of freezing in the recursive least square estimators and the covariance windup in the exponential weighted least square estimators. We present a theoretical analysis of these phenomena and a simple method to check the exciting condition in real time. Using these results and under some conditions such as slowly time varying Plant and a tracking problem for set point, a robust self-tuning regulators without PE is proposed. In this algorithm, when PE is not satisfied, only plant gain is estimated, and then the system parameters are corrected by it. It is shown that the gain adaptive scheme makes the robustness to be improved against modeling error, off-set, and correlated noise etc, by the results of analysis and simulations.

A mesh-free analysis method of structural elements of engineering structures based on B-spline wavelet basis function

  • Chen, Jianping;Tang, Wenyong;Huang, Pengju;Xu, Li
    • Structural Engineering and Mechanics
    • /
    • v.57 no.2
    • /
    • pp.281-294
    • /
    • 2016
  • The paper is devoted to study a mesh-free analysis method of structural elements of engineering structures based on B-spline Wavelet Basis Function. First, by employing the moving-least square method and the weighted residual method to solve the structural displacement field, the control equations and the stiffness equations are obtained. And then constructs the displacement field of the structure by using the m-order B-spline wavelet basis function as a weight function. In the end, the paper selects the plane beam structure and the structure with opening hole to carry out numerical analysis of deformation and stress. The Finite Element Method calculation results are compared with the results of the method proposed, and the calculation results of the relative error norm is compared with Gauss weight function as weight function. Therefore, the clarification verified the validity and accuracy of the proposed method.

Target segmentation in non-homogeneous infrared images using a PCA plane and an adaptive Gaussian kernel

  • Kim, Yong Min;Park, Ki Tae;Moon, Young Shik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.2302-2316
    • /
    • 2015
  • We propose an efficient method of extracting targets within a region of interest in non-homogeneous infrared images by using a principal component analysis (PCA) plane and adaptive Gaussian kernel. Existing approaches for extracting targets have been limited to using only the intensity values of the pixels in a target region. However, it is difficult to extract the target regions effectively because the intensity values of the target region are mixed with the background intensity values. To overcome this problem, we propose a novel PCA based approach consisting of three steps. In the first step, we apply a PCA technique minimizing the total least-square errors of an IR image. In the second step, we generate a binary image that consists of pixels with higher values than the plane, and then calculate the second derivative of the sum of the square errors (SDSSE). In the final step, an iteration is performed until the convergence criteria is met, including the SDSSE, angle and labeling value. Therefore, a Gaussian kernel is weighted in addition to the PCA plane with the non-removed data from the previous step. Experimental results show that the proposed method achieves better segmentation performance than the existing method.

Comparisons of Kruglyak and Lander's Nonparametric Linkage Test and Weighted Regression Incorporating Replications (KRUGLYAK과 LANDER의 유전연관성 비모수 방법과 반복 자료를 고려한 가중 회귀분석법의 비교)

  • Choi, Eun-Kyeong;Song, Hae-Hiang
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.1
    • /
    • pp.1-17
    • /
    • 2008
  • The ordinary least squares regression method of Haseman and Elston(1972) is most widely used in genetic linkage studies for continuous traits of sib pairs. Kruglyak and Lander(1995) suggested a statistic which appears to be a nonparametric counterpart to the Haseman and Elston(1972)'s regression method, but in fact these two methods are quite different. In this paper the relationships between these two methods are described and will be compared by simulation studies. One of the characteristics of the sib-pair linkage study is that the explanatory variable has only three different values and thus dependent variable is heavily replicated in each value of the explanatory variable. We propose a weighted least squares regression method which is more appropriate to this situation and the efficiency of the weighted regression in genetic linkage study was explored with normal and non-normal simulated continuous traits data. Simulation studies demonstrated that the weighted regression is more powerful than other tests.

Estimation on a two-parameter Rayleigh distribution under the progressive Type-II censoring scheme: comparative study

  • Seo, Jung-In;Seo, Byeong-Gyu;Kang, Suk-Bok
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.2
    • /
    • pp.91-102
    • /
    • 2019
  • In this paper, we propose a new estimation method based on a weighted linear regression framework to obtain some estimators for unknown parameters in a two-parameter Rayleigh distribution under a progressive Type-II censoring scheme. We also provide unbiased estimators of the location parameter and scale parameter which have a nuisance parameter, and an estimator based on a pivotal quantity which does not depend on the other parameter. The proposed weighted least square estimator (WLSE) of the location parameter is not dependent on the scale parameter. In addition, the WLSE of the scale parameter is not dependent on the location parameter. The results are compared with the maximum likelihood method and pivot-based estimation method. The assessments and comparisons are done using Monte Carlo simulations and real data analysis. The simulation results show that the estimators ${\hat{\mu}}_u({\hat{\theta}}_p)$ and ${\hat{\theta}}_p({\hat{\mu}}_u)$ are superior to the other estimators in terms of the mean squared error (MSE) and bias.

Multiobjective Space Search Optimization and Information Granulation in the Design of Fuzzy Radial Basis Function Neural Networks

  • Huang, Wei;Oh, Sung-Kwun;Zhang, Honghao
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.636-645
    • /
    • 2012
  • This study introduces an information granular-based fuzzy radial basis function neural networks (FRBFNN) based on multiobjective optimization and weighted least square (WLS). An improved multiobjective space search algorithm (IMSSA) is proposed to optimize the FRBFNN. In the design of FRBFNN, the premise part of the rules is constructed with the aid of Fuzzy C-Means (FCM) clustering while the consequent part of the fuzzy rules is developed by using four types of polynomials, namely constant, linear, quadratic, and modified quadratic. Information granulation realized with C-Means clustering helps determine the initial values of the apex parameters of the membership function of the fuzzy neural network. To enhance the flexibility of neural network, we use the WLS learning to estimate the coefficients of the polynomials. In comparison with ordinary least square commonly used in the design of fuzzy radial basis function neural networks, WLS could come with a different type of the local model in each rule when dealing with the FRBFNN. Since the performance of the FRBFNN model is directly affected by some parameters such as e.g., the fuzzification coefficient used in the FCM, the number of rules and the orders of the polynomials present in the consequent parts of the rules, we carry out both structural as well as parametric optimization of the network. The proposed IMSSA that aims at the simultaneous minimization of complexity and the maximization of accuracy is exploited here to optimize the parameters of the model. Experimental results illustrate that the proposed neural network leads to better performance in comparison with some existing neurofuzzy models encountered in the literature.

Implementation of Various FIR Filters using Constrained Least Square Criterion (제한된 최소 자승 오차 기준에 의한 다양한 FIR 필터 구현)

  • Hong, Seung-Eok;Kim, Joong-Kyu
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.10
    • /
    • pp.175-185
    • /
    • 1998
  • In this paper, we studied some design methodologies of typical FIR filters based on the peak-error constrained least square criterion which was first introducedd by Adams in 1991. This method is a mixed type of the classical least squared error method(LSM) and the so-called min-max error method (MMM). And by considering both the least squared error as well as the maximum error, the solution, i.e. the impulse response of the filter, can be found only when the restrictions on maximum gain, transition bandwidth, and the squared error are satisfied simultaneously under some trade-off conditions. We used the multiple exchange algorithms for optimization procedure and applied the design methodology to the cases of the multiband filter, the differentiator, and the Hilbert transformer by taking the balance of two design criteria into account. The results show that the peak-error constrained least weighted square error design method(PLEM) is superior in performance to the existing LSM and MMM from both the squared error and the maximum error standpoints. And it is verified that PLEM can be applied to not only the case of simple low pass filter, but also to various types of FIR filters.

  • PDF