• Title/Summary/Keyword: Weighted Graph

Search Result 127, Processing Time 0.027 seconds

Efficient Mapping Scheme for Parallel Processing (병렬처리를 위한 효율적인 사상 기법)

  • Kim, Seok-Su;Jeon, Mun-Seok
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.4
    • /
    • pp.766-780
    • /
    • 1996
  • This paper presents a mapping scheme for parallel processing using an accurate characterization of the communication overhead. A set of objective functions is formulated to evaluate the optimality of mapping a problem graph into a system graph. One of them is especially suitable for real-time applications of parallel processing. These objective functions are different from the conventional objective functions in that the edges in the problem graph are weighted and the actual distance rather than the nominal distance for the edges in the system graph is employed. This facilitates a more accurate qualification of the communication overhead. An efficient mapping scheme has been developed for the objective functions, where two levels of assignment optimization procedures are employed: initial assignment and pairwise exchange. The mapping scheme has been tested using the hypercube as a system graph.

  • PDF

Graph Visualization Using Genetic Algorithms of Preserving Distances between Vertices and Minimizing Edge Intersections (정점 간의 거리 보존 및 최소 간선 교차에 기반을 둔 유전 알고리즘을 이용한 그래프 시각화)

  • Kye, Ju-Sung;Kim, Yong-Hyuk;Kim, Woo-Sang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.2
    • /
    • pp.234-242
    • /
    • 2010
  • In this paper, we deal with the visualization of graphs, which are one of the most important data structures. As the size of a graph increases, it becomes more difficult to check the graph visually because of the increase of edge intersections. We propose a new method of overcoming such problem. Most of previous studies considered only the minimization of edge intersections, but we additionally pursue to preserve distances between vertices. We present a novel genetic algorithm using an evaluation function based on a weighted sum of two objectives. Our experiments could show effective visualization results.

EXISTENCE OF GLOBAL SOLUTIONS TO SOME NONLINEAR EQUATIONS ON LOCALLY FINITE GRAPHS

  • Chang, Yanxun;Zhang, Xiaoxiao
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.703-722
    • /
    • 2021
  • Let G = (V, E) be a connected locally finite and weighted graph, ∆p be the p-th graph Laplacian. Consider the p-th nonlinear equation -∆pu + h|u|p-2u = f(x, u) on G, where p > 2, h, f satisfy certain assumptions. Grigor'yan-Lin-Yang [24] proved the existence of the solution to the above nonlinear equation in a bounded domain Ω ⊂ V. In this paper, we show that there exists a strictly positive solution on the infinite set V to the above nonlinear equation by modifying some conditions in [24]. To the m-order differential operator 𝓛m,p, we also prove the existence of the nontrivial solution to the analogous nonlinear equation.

Design and Implementation of a Genetic Algorithm for Global Routing (글로벌 라우팅 유전자 알고리즘의 설계와 구현)

  • 송호정;송기용
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.2
    • /
    • pp.89-95
    • /
    • 2002
  • Global routing is to assign each net to routing regions to accomplish the required interconnections. The most popular algorithms for global routing inlcude maze routing algorithm, line-probe algorithm, shortest path based algorithm, and Steiner tree based algorithm. In this paper we propose weighted network heuristic(WNH) as a minimal Steiner tree search method in a routing graph and a genetic algorithm based on WNH for the global routing. We compare the genetic algorithm(GA) with simulated annealing(SA) by analyzing the results of each implementation.

  • PDF

Minimizing Weighted Tardiness using Decomposition Method (분할법을 이용한 가중납기지연 최소화 문제)

  • Byeon, Eui-Seok;Hong, Sung-Wook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.29 no.1
    • /
    • pp.109-115
    • /
    • 2006
  • Exact solutions for practical-size problems in job shop will be highly inefficient. Scheduling heuristics, therefore, are typically found in the literature. If we consider real-life situations such as machine breakdowns, the existing scheduling methods will be even more limited. Scheduling against due-dates addresses one of the most critical issues in modern manufacturing systems. In this paper, the method for weighted tardiness schedule using a graph theoretic decomposition heuristic is presented. It outstands the efficiency of computation as well as the robustness of the schedule.

Vulnerable Path Attack and its Detection

  • She, Chuyu;Wen, Wushao;Ye, Quanqi;Zheng, Kesong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2149-2170
    • /
    • 2017
  • Application-layer Distributed Denial-of-Service (DDoS) attack is one of the leading security problems in the Internet. In recent years, the attack strategies of application-layer DDoS have rapidly developed. This paper introduces a new attack strategy named Path Vulnerabilities-Based (PVB) attack. In this attack strategy, an attacker first analyzes the contents of web pages and subsequently measures the actual response time of each webpage to build a web-resource-weighted-directed graph. The attacker uses a Top M Longest Path algorithm to find M DDoS vulnerable paths that consume considerable resources when sequentially accessing the pages following any of those paths. A detection mechanism for such attack is also proposed and discussed. A finite-state machine is used to model the dynamical processes for the state of the user's session and monitor the PVB attacks. Numerical results based on real-traffic simulations reveal the efficiency of the attack strategy and the detection mechanism.

Spectrum allocation strategy for heterogeneous wireless service based on bidding game

  • Cao, Jing;Wu, Junsheng;Yang, Wenchao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1336-1356
    • /
    • 2017
  • The spectrum scarcity crisis has resulted in a shortage of resources for many emerging wireless services, and research on dynamic spectrum management has been used to solve this problem. Game theory can allocate resources to users in an economic way through market competition. In this paper, we propose a bidding game-based spectrum allocation mechanism in cognitive radio network. In our framework, primary networks provide heterogeneous wireless service and different numbers of channels, while secondary users have diverse bandwidth demands for transmission. Considering the features of traffic and QoS demands, we design a weighted interference graph-based grouping algorithm to divide users into several groups and construct the non-interference user-set in the first step. In the second step, we propose the dynamic bidding game-based spectrum allocation strategy; we analyze both buyer's and seller's revenue and determine the best allocation strategy. We also prove that our mechanism can achieve balanced pricing schema in competition. Theoretical and simulation results show that our strategy provides a feasible solution to improve spectrum utilization, can maximize overall utility and guarantee users' individual rationality.

An Energy Estimation-based Routing Protocol for Maximizing Network Lifetime in Wireless Sensor Networks (무선 센서네트워크에서 네트워크 수명을 최대화하기 위한 에너지 추정 기반의 라우팅 프로토콜)

  • Hong, Ran-Kyung;Kweon, Ki-Suk;Ghim, Ho-Jin;Yoon, Hyun-Soo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.3
    • /
    • pp.281-285
    • /
    • 2008
  • Wireless sensor networks are closely related with the geometric environment in which they are deployed. We consider the probable case when a routing protocol runs on an environment with many complex obstacles like downtown surroundings. In addition, there are no unrealistic assumptions in order to increase practicality of the protocol. Our goal is to find a routing protocol for maximizing network lifetime by using only connectivity information in the complex sensor network environment. We propose a topology-based routing algorithm that accomplishes good performance in terms of network lifetime and routing complexity as measures. Our routing algorithm makes routing decision based on a weighted graph as topological abstraction of the complex network. The graph conduces to lifetime enhancement by giving alternative paths, distributing the skewed burden. An energy estimation method is used so as to maintain routing information without any additional cost. We show how our approach can be used to maximize network lifetime and by extensive simulation we prove that out approach gives good results in terms of both measures-network lifetime and routing complexity.

Interval prediction on the sum of binary random variables indexed by a graph

  • Park, Seongoh;Hahn, Kyu S.;Lim, Johan;Son, Won
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.3
    • /
    • pp.261-272
    • /
    • 2019
  • In this paper, we propose a procedure to build a prediction interval of the sum of dependent binary random variables over a graph to account for the dependence among binary variables. Our main interest is to find a prediction interval of the weighted sum of dependent binary random variables indexed by a graph. This problem is motivated by the prediction problem of various elections including Korean National Assembly and US presidential election. Traditional and popular approaches to construct the prediction interval of the seats won by major parties are normal approximation by the CLT and Monte Carlo method by generating many independent Bernoulli random variables assuming that those binary random variables are independent and the success probabilities are known constants. However, in practice, the survey results (also the exit polls) on the election are random and hardly independent to each other. They are more often spatially correlated random variables. To take this into account, we suggest a spatial auto-regressive (AR) model for the surveyed success probabilities, and propose a residual based bootstrap procedure to construct the prediction interval of the sum of the binary outcomes. Finally, we apply the procedure to building the prediction intervals of the number of legislative seats won by each party from the exit poll data in the $19^{th}$ and $20^{th}$ Korea National Assembly elections.

Resource Allocation for D2D Communication in Cellular Networks Based on Stochastic Geometry and Graph-coloring Theory

  • Xu, Fangmin;Zou, Pengkai;Wang, Haiquan;Cao, Haiyan;Fang, Xin;Hu, Zhirui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4946-4960
    • /
    • 2020
  • In a device-to-device (D2D) underlaid cellular network, there exist two types of co-channel interference. One type is inter-layer interference caused by spectrum reuse between D2D transmitters and cellular users (CUEs). Another type is intra-layer interference caused by spectrum sharing among D2D pairs. To mitigate the inter-layer interference, we first derive the interference limited area (ILA) to protect the coverage probability of cellular users by modeling D2D users' location as a Poisson point process, where a D2D transmitter is allowed to reuse the spectrum of the CUE only if the D2D transmitter is outside the ILA of the CUE. To coordinate the intra-layer interference, the spectrum sharing criterion of D2D pairs is derived based on the (signal-to-interference ratio) SIR requirement of D2D communication. Based on this criterion, D2D pairs are allowed to share the spectrum when one D2D pair is far from another sufficiently. Furthermore, to maximize the energy efficiency of the system, a resource allocation scheme is proposed according to weighted graph coloring theory and the proposed ILA restriction. Simulation results show that our proposed scheme provides significant performance gains over the conventional scheme and the random allocation scheme.