• Title/Summary/Keyword: Weighted FCM(Fuzzy C-Means)

Search Result 19, Processing Time 0.02 seconds

Bayesian Nonlinear Blind Channel Equalizer based on Gaussian Weighted MFCM

  • Han, Soo-Whan;Park, Sung-Dae;Lee, Jong-Keuk
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.12
    • /
    • pp.1625-1634
    • /
    • 2008
  • In this study, a modified Fuzzy C-Means algorithm with Gaussian weights (MFCM_GW) is presented for the problem of nonlinear blind channel equalization. The proposed algorithm searches for the optimal channel output states of a nonlinear channel based on received symbols. In contrast to conventional Euclidean distance in Fuzzy C-Means (FCM), the use of the Bayesian likelihood fitness function and the Gaussian weighted partition matrix is exploited in this method. In the search procedure, all possible sets of desired channel states are constructed by considering the combinations of estimated channel output states. The set of desired states characterized by the maxima] value of the Bayesian fitness is selected and updated by using the Gaussian weights. After this procedure, the Bayesian equalizer with the final desired states is implemented to reconstruct transmitted symbols. The performance of the proposed method is compared with those of a simplex genetic algorithm (GA), a hybrid genetic algorithm (GA merged with simulated annealing (SA):GASA), and a previously developed version of MFCM. In particular, a relative]y high accuracy and a fast search speed have been observed.

  • PDF

Comparative Analysis of Learning Methods of Fuzzy Clustering-based Neural Network Pattern Classifier (퍼지 클러스터링기반 신경회로망 패턴 분류기의 학습 방법 비교 분석)

  • Kim, Eun-Hu;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1541-1550
    • /
    • 2016
  • In this paper, we introduce a novel learning methodology of fuzzy clustering-based neural network pattern classifier. Fuzzy clustering-based neural network pattern classifier depicts the patterns of given classes using fuzzy rules and categorizes the patterns on unseen data through fuzzy rules. Least squares estimator(LSE) or weighted least squares estimator(WLSE) is typically used in order to estimate the coefficients of polynomial function, but this study proposes a novel coefficient estimate method which includes advantages of the existing methods. The premise part of fuzzy rule depicts input space as "If" clause of fuzzy rule through fuzzy c-means(FCM) clustering, while the consequent part of fuzzy rule denotes output space through polynomial function such as linear, quadratic and their coefficients are estimated by the proposed local least squares estimator(LLSE)-based learning. In order to evaluate the performance of the proposed pattern classifier, the variety of machine learning data sets are exploited in experiments and through the comparative analysis of performance, it provides that the proposed LLSE-based learning method is preferable when compared with the other learning methods conventionally used in previous literature.

Design of RBF Neural Networks Based on Recursive Weighted Least Square Estimation for Processing Massive Meteorological Radar Data and Its Application (방대한 기상 레이더 데이터의 원할한 처리를 위한 순환 가중최소자승법 기반 RBF 뉴럴 네트워크 설계 및 응용)

  • Kang, Jeon-Seong;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.99-106
    • /
    • 2015
  • In this study, we propose Radial basis function Neural Network(RBFNN) using Recursive Weighted Least Square Estimation(RWLSE) to effectively deal with big data class meteorological radar data. In the condition part of the RBFNN, Fuzzy C-Means(FCM) clustering is used to obtain fitness values taking into account characteristics of input data, and connection weights are defined as linear polynomial function in the conclusion part. The coefficients of the polynomial function are estimated by using RWLSE in order to cope with big data. As recursive learning technique, RWLSE which is based on WLSE is carried out to efficiently process big data. This study is experimented with both widely used some Machine Learning (ML) dataset and big data obtained from meteorological radar to evaluate the performance of the proposed classifier. The meteorological radar data as big data consists of precipitation echo and non-precipitation echo, and the proposed classifier is used to efficiently classify these echoes.

Multiobjective Space Search Optimization and Information Granulation in the Design of Fuzzy Radial Basis Function Neural Networks

  • Huang, Wei;Oh, Sung-Kwun;Zhang, Honghao
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.636-645
    • /
    • 2012
  • This study introduces an information granular-based fuzzy radial basis function neural networks (FRBFNN) based on multiobjective optimization and weighted least square (WLS). An improved multiobjective space search algorithm (IMSSA) is proposed to optimize the FRBFNN. In the design of FRBFNN, the premise part of the rules is constructed with the aid of Fuzzy C-Means (FCM) clustering while the consequent part of the fuzzy rules is developed by using four types of polynomials, namely constant, linear, quadratic, and modified quadratic. Information granulation realized with C-Means clustering helps determine the initial values of the apex parameters of the membership function of the fuzzy neural network. To enhance the flexibility of neural network, we use the WLS learning to estimate the coefficients of the polynomials. In comparison with ordinary least square commonly used in the design of fuzzy radial basis function neural networks, WLS could come with a different type of the local model in each rule when dealing with the FRBFNN. Since the performance of the FRBFNN model is directly affected by some parameters such as e.g., the fuzzification coefficient used in the FCM, the number of rules and the orders of the polynomials present in the consequent parts of the rules, we carry out both structural as well as parametric optimization of the network. The proposed IMSSA that aims at the simultaneous minimization of complexity and the maximization of accuracy is exploited here to optimize the parameters of the model. Experimental results illustrate that the proposed neural network leads to better performance in comparison with some existing neurofuzzy models encountered in the literature.

Gamma correction FCM algorithm with conditional spatial information for image segmentation

  • Liu, Yang;Chen, Haipeng;Shen, Xuanjing;Huang, Yongping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4336-4354
    • /
    • 2018
  • Fuzzy C-means (FCM) algorithm is a most usually technique for medical image segmentation. But conventional FCM fails to perform well enough on magnetic resonance imaging (MRI) data with the noise and intensity inhomogeneity (IIH). In the paper, we propose a Gamma correction conditional FCM algorithm with spatial information (GcsFCM) to solve this problem. Firstly, the pre-processing, Gamma correction, is introduced to enhance the details of images. Secondly, the spatial information is introduced to reduce the effect of noise. Then we introduce the effective neighborhood mechanism into the local space information to improve the robustness for the noise and inhomogeneity. And the mechanism describes the degree of participation in generating local membership values and building clusters. Finally, the adjustment mechanism and the spatial information are combined into the weighted membership function. Experimental results on four image volumes with noise and IIH indicate that the proposed GcsFCM algorithm is more effective and robust to noise and IIH than the FCM, sFCM and csFCM algorithms.

Design of Very Short-term Precipitation Forecasting Classifier Based on Polynomial Radial Basis Function Neural Networks for the Effective Extraction of Predictive Factors (예보인자의 효과적 추출을 위한 다항식 방사형 기저 함수 신경회로망 기반 초단기 강수예측 분류기의 설계)

  • Kim, Hyun-Myung;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.128-135
    • /
    • 2015
  • In this study, we develop the very short-term precipitation forecasting model as well as classifier based on polynomial radial basis function neural networks by using AWS(Automatic Weather Station) and KLAPS(Korea Local Analysis and Prediction System) meteorological data. The polynomial-based radial basis function neural networks is designed to realize precipitation forecasting model as well as classifier. The structure of the proposed RBFNNs consists of three modules such as condition, conclusion, and inference phase. The input space of the condition phase is divided by using Fuzzy C-means(FCM) and the local area of the conclusion phase is represented as four types of polynomial functions. The coefficients of connection weights are estimated by weighted least square estimation(WLSE) for modeling as well as least square estimation(LSE) method for classifier. The final output of the inference phase is obtained through fuzzy inference method. The essential parameters of the proposed model and classifier such ad input variable, polynomial order type, the number of rules, and fuzzification coefficient are optimized by means of Particle Swarm Optimization(PSO) and Differential Evolution(DE). The performance of the proposed precipitation forecasting system is evaluated by using KLAPS meteorological data.

Blind Nonlinear Channel Equalization by Performance Improvement on MFCM (MFCM의 성능개선을 통한 블라인드 비선형 채널 등화)

  • Park, Sung-Dae;Woo, Young-Woon;Han, Soo-Whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.11
    • /
    • pp.2158-2165
    • /
    • 2007
  • In this paper, a Modified Fuzzy C-Means algorithm with Gaussian Weights(MFCM_GW) is presented for nonlinear blind channel equalization. The proposed algorithm searches the optimal channel output states of a nonlinear channel from the received symbols, based on the Bayesian likelihood fitness function and Gaussian weighted partition matrix instead of a conventional Euclidean distance measure. Next, the desired channel states of a nonlinear channel are constructed with the elements of estimated channel output states, and placed at the center of a Radial Basis Function(RBF) equalizer to reconstruct transmitted symbols. In the simulations, binary signals are generated at random with Gaussian noise. The performance of the proposed method is compared with those of a simplex genetic algorithm(GA), a hybrid genetic algorithm(GA merged with simulated annealing(SA): GASA), and a previously developed version of MFCM. It is shown that a relatively high accuracy and fast search speed has been achieved.

Region-based Multi-level Thresholding for Color Image Segmentation (영역 기반의 Multi-level Thresholding에 의한 컬러 영상 분할)

  • Oh, Jun-Taek;Kim, Wook-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.6 s.312
    • /
    • pp.20-27
    • /
    • 2006
  • Multi-level thresholding is a method that is widely used in image segmentation. However most of the existing methods are not suited to be directly used in applicable fields and moreover expanded until a step of image segmentation. This paper proposes region-based multi-level thresholding as an image segmentation method. At first we classify pixels of each color channel to two clusters by using EWFCM(Entropy-based Weighted Fuzzy C-Means) algorithm that is an improved FCM algorithm with spatial information between pixels. To obtain better segmentation results, a reduction of clusters is then performed by a region-based reclassification step based on a similarity between regions existing in a cluster and the other clusters. The clusters are created using the classification information of pixels according to color channel. We finally perform a region merging by Bayesian algorithm based on Kullback-Leibler distance between a region and the neighboring regions as a post-processing method as many regions still exist in image. Experiments show that region-based multi-level thresholding is superior to cluster-, pixel-based multi-level thresholding, and the existing mettled. And much better segmentation results are obtained by the post-processing method.

Detection of Text Candidate Regions using Region Information-based Genetic Algorithm (영역정보기반의 유전자알고리즘을 이용한 텍스트 후보영역 검출)

  • Oh, Jun-Taek;Kim, Wook-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.6
    • /
    • pp.70-77
    • /
    • 2008
  • This paper proposes a new text candidate region detection method that uses genetic algorithm based on information of the segmented regions. In image segmentation, a classification of the pixels at each color channel and a reclassification of the region-unit for reducing inhomogeneous clusters are performed. EWFCM(Entropy-based Weighted C-Means) algorithm to classify the pixels at each color channel is an improved FCM algorithm added with spatial information, and therefore it removes the meaningless regions like noise. A region-based reclassification based on a similarity between each segmented region of the most inhomogeneous cluster and the other clusters reduces the inhomogeneous clusters more efficiently than pixel- and cluster-based reclassifications. And detecting text candidate regions is performed by genetic algorithm based on energy and variance of the directional edge components, the number, and a size of the segmented regions. The region information-based detection method can singles out semantic text candidate regions more accurately than pixel-based detection method and the detection results will be more useful in recognizing the text regions hereafter. Experiments showed the results of the segmentation and the detection. And it confirmed that the proposed method was superior to the existing methods.