• Title/Summary/Keyword: Weight Learning

Search Result 670, Processing Time 0.027 seconds

A Study on Real-time Drilling Parameters Prediction Using Recurrent Neural Network (순환신경망을 이용한 실시간 시추매개변수 예측 연구)

  • Han, Dong-kwon;Seo, Hyeong-jun;Kim, Min-soo;Kwon, Sun-il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.204-206
    • /
    • 2021
  • Real-time drilling parameters prediction is a considerably important study from the viewpoint of maximizing drilling efficiency. Among the methods of maximizing drilling, the method of improving the drilling speed is common, which is related to the rate of penetration, drillstring rotational speed, weight on bit, and drilling mud flow rate. This study proposes a method of predicting the drilling rate, one of the real-time drilling parameters, using a recurrent neural network-based deep learning model, and compares the existing physical-based drilling rate prediction model with a prediction model using deep learning.

  • PDF

Self-Relaxation for Multilayer Perceptron

  • Liou, Cheng-Yuan;Chen, Hwann-Txong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.113-117
    • /
    • 1998
  • We propose a way to show the inherent learning complexity for the multilayer perceptron. We display the solution space and the error surfaces on the input space of a single neuron with two inputs. The evolution of its weights will follow one of the two error surfaces. We observe that when we use the back-propagation(BP) learning algorithm (1), the wight cam not jump to the lower error surface due to the implicit continuity constraint on the changes of weight. The self-relaxation approach is to explicity find out the best combination of all neurons' two error surfaces. The time complexity of training a multilayer perceptron by self-relaxationis exponential to the number of neurons.

  • PDF

Neural Network and Its Application to Rainfall-Runoff Forecasting

  • Kang, Kwan-Won;Park, Chan-Young;Kim, Ju-Hwan
    • Korean Journal of Hydrosciences
    • /
    • v.4
    • /
    • pp.1-9
    • /
    • 1993
  • It is a major objective for the management and operation of water resources system to forecast streamflows. The applicability of artificial neural network model to hydrologic system is analyzed and the performance is compared by statistical method with observed. Multi-layered perception was used to model rainfall-runoff process at Pyung Chang River Basin in Korea. The neural network model has the function of learning the process which can be trained with the error backpropagation (EBP) algorithm in two phases; (1) learning phase permits to find the best parameters(weight matrix) between input and output. (2) adaptive phase use the EBP algorithm in order to learn from the provided data. The generalization results have been obtained on forecasting the daily and hourly streamflows by assuming them with the structure of ARMA model. The results show validities in applying to hydrologic forecasting system.

  • PDF

A learning algorithm of fuzzy neural networks with extended fuzzy weights (확장된 퍼지 가중치를 갖는 퍼지 신경망 학습알고리즘)

  • 손영수;나영남;배상현
    • Journal of Intelligence and Information Systems
    • /
    • v.3 no.1
    • /
    • pp.69-81
    • /
    • 1997
  • In this paper, first we propose an architecture of fuzzy neural networks with triangular fuzzy weights. The proposed fuzzy neural network can handle fuzzy input vectors. In both cases, outputs from the fuzzy network are fuzzy vectors. The input-output relation of each unit of the fuzzy neural network is defined by the extention principle of Zadeh. Also we define a cost function for the level sets(i. e., $\alpha$-cuts)of fuzzy outputs and fuzzy targets. Then we derive a learning algorithm from the cost function for adjusting three parameters of each triangular fuzzy weight. Finally, we illustrate our a, pp.oach by computer simulation examples.

  • PDF

Incremental Adaptive Aearning Algorithm with Initial Generic Knowledge (초기 일반 지식을 갖고 있는 점증 적응 학습 알고리즘)

  • 오규환;채수익
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.2
    • /
    • pp.187-196
    • /
    • 1996
  • This paper introduces the concept of fixed weights and proposes an algorithm for classification by adding this concept to vector space separation method in LVQ. The proposed algorithm is based on competitive learning. It uses fixed weightsfor generality and fast adaptation efficient radius for new weight creation, and L1 distance for fast calcualtion. It can be applied to many fields requiring adaptive learning with the support of generality, real-tiem processing and sufficient training effect using smaller data set. Recognition rate of over 98% for the train set and 94% for the test set was obtained by applying the suggested algorithm to on-line handwritten recognition.

  • PDF

Efficient Learning of Neural Network Using an Improved Genetic Algorithm (개선된 유전 알고리즘을 사용한 효율적 신경망 학습)

  • 김형래;김성주;최우경;하상형;조현찬;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.315-318
    • /
    • 2004
  • 최적해 탐색 도구로 널리 알려진 유전 알고리즘을 이용하여 신경망의 학습을 위한 가중치를 탐색하는 방법은 신경망의 학습 방법의 하나로 사용되고 있다. 신경망의 가중치는 일정 시간의 유전자 연산을 수행하게 되면 최적화된 가중치의 값과 유사하게 되는 특징을 지닌다. 이는 유전자 연산 방법에 의해 가중치가 수렴되고 있음을 의미하며, 그 때의 가중치는 일정한 패턴을 지니는 특징을 발견할 수 있다. 이에, 본 논문에서는 탐색된 가중치의 패턴을 보존하기 위한 방법으로 유전자의 일정 부분을 고정한 후 유전자 연산을 수행하는 개선된 학습 방법을 제안하고자 한다. 이를 이용할 경우에 유전자 탐색의 문제점으로 제시되고 있는 탐색 시간을 효율적으로 감소시킬 수 있는 장점이 있다.

  • PDF

A study of emergent behaviors multiple cooperating agent using learning method (학습기법을 이용한 다중 협동 에이전트의 창발 행동에 관한 연구)

  • 박성수;안동언
    • Proceedings of the IEEK Conference
    • /
    • 2003.11b
    • /
    • pp.137-140
    • /
    • 2003
  • This paper proposes a pursuing system utilizing the learning method where multiple cooperating agents emulate social behaviors of animals and insects and realize their group behaviors. Each agent contains sensors to perceive other agents in several directions and decides its behavior based on the information obtained by the sensors. In this paper, a neural network is used fir behavior decision controller. The input of the neural network is decided by the existence of other agents and the distance to the other agents. The output determines the directions in which the agent moves. The connection weight values of this neural network are encoded as genes, and the fitness individuals are determined using a genetic algorithm. Here, the fitness values imply how much group behaviors fit adequately to the goal and can express group behaviors. The validity of the system is verified through simulation.

  • PDF

A Study on the Parameter Estimation of an Induction Motor using Neural Networks (신경회로망을 이용한 유도전동기의 피라미터 추정)

  • 류한민;김성환;박태식;유지윤
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.225-229
    • /
    • 1998
  • If there is a mismatch between the controller programmed rotor time constant and the actual time constant of motor, the decoupling between the flux and torque is lost in an indirect rotor field oriented control. This paper presents a new estimation scheme for rotor time constant using artificial neural networks. The parameters of induction motor model organize 2 layer neural to be weight between neuron, which is proposed new in this paper. This method makes networks simple, so its brings not only the improvement in speed but simplification in calculation. Furthermore, it is possible to estimated rotor time constant real time through on-line learning without using off-line learning. The digital simulation and the experimental results to verify the effectiveness of the new method are described in this paper.

  • PDF

A Study on Speech Recognition Using Auditory Model and Recurrent Network (청각모델과 회귀회로망을 이용한 음성인식에 관한 연구)

  • 김동준;이재혁
    • Journal of Biomedical Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.157-162
    • /
    • 1990
  • In this study, a peripheral auditory model is used as a frequency feature extractor and a recurrent network which has recurrent links on input nodes is constructed in order to show the reliability of the recurrent network as a recognizer by executing recognition tests for 4 Korean place names and syllables. In the case of using the general learning rule, it is found that the weights are diverged for a long sequence because of the characteristics of the node function in the hidden and output layers. So, a refined weight compensation method is proposed and, using this method, it is possible to improve the system operation and to use long data. The recognition results are considerably good, even if time worping and endpoint detection are omitted and learning patterns and test patterns are made of average length of data. The recurrent network used in this study reflects well time information of temporal speech signal.

  • PDF

Lesion development and functional recovery after spinal cord injury (척수 손상 후 병변의 발달과 기능의 회복)

  • Jun Kyong-hee;Park Rae-Joon
    • The Journal of Korean Physical Therapy
    • /
    • v.14 no.4
    • /
    • pp.441-453
    • /
    • 2002
  • The purpose of this study was to characterize lesion development, neural plasticity, and motor learing after spinal cord injury. Facilitatory intervention such as weight bearing and locomotor training after SCI may be more effective than compensatory strategies at inducing neuroplasticity and motor recovery. Minimal tissue sparing has a profound impact on segmental systems and recovery of function Spinal animal could functional locomotion when subjected to repetitive stimulation. task-specific learning of isolated lumbar spinal could improve motor performance more then other task learning.

  • PDF