• Title/Summary/Keyword: Weibull distribution model

Search Result 389, Processing Time 0.022 seconds

The Proportional Hazards Modeling for Consecutive Pipe Failures Based on an Individual Pipe Identification Method using the Characteristics of Water Distribution Pipes (상수도 배수관로의 특성에 따른 개별관로 정의 방법을 이용한 파손사건 사이의 비례위험모델링)

  • Park, Suwan;Kim, Jung Wook;Jun, Hwan Don
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.1
    • /
    • pp.87-96
    • /
    • 2007
  • In this paper a methodology of identifying individual pipes according to the internal and external characteristics of pipe is developed, and the methodology is applied to a case study water distribution pipe break database. Using the newly defined individual pipes the hazard rates of the cast iron 6 inch pipes are modeled by implementing the proportional hazards modeling approach for consecutive pipe failures. The covariates to be considered in the modeling procedures are selected by considering the general availability of the data and the practical applicability of the modeling results. The individual cast iron 6 inch pipes are categorized into seven ordered survival time groups according to the total number of breaks recorded in a pipe to construct distinct proportional hazard model (PHM) for each survival time group (STG). The modeling results show that all of the PHMs have the hazard rate forms of the Weibull distribution. In addition, the estimated baseline survivor functions show that the survival probabilities of the STGs generally decrease as the number of break increases. It is found that STG I has an increasing hazard rate whereas the other STGs have decreasing hazard rates. Regarding the first failure the hazard ratio of spun-rigid and spun-flex cast iron pipes to pit cast iron pipes is estimated as 1.8 and 6.3, respectively. For the second or more failures the relative effects of pipe material/joint type on failure were not conclusive. The degree of land development affected pipe failure for STGs I, II, and V, and the average hazard ratio was estimated as 1.8. The effects of length on failure decreased as more breaks occur and the population in a GRID affected the hazard rate of the first pipe failure.

Joint distribution of wind speed and direction in the context of field measurement

  • Wang, Hao;Tao, Tianyou;Wu, Teng;Mao, Jianxiao;Li, Aiqun
    • Wind and Structures
    • /
    • v.20 no.5
    • /
    • pp.701-718
    • /
    • 2015
  • The joint distribution of wind speed and wind direction at a bridge site is vital to the estimation of the basic wind speed, and hence to the wind-induced vibration analysis of long-span bridges. Instead of the conventional way relying on the weather stations, this study proposed an alternate approach to obtain the original records of wind speed and the corresponding directions based on field measurement supported by the Structural Health Monitoring System (SHMS). Specifically, SHMS of Sutong Cable-stayed Bridge (SCB) is utilized to study the basic wind speed with directional information. Four anemometers are installed in the SHMS of SCB: upstream and downstream of the main deck center, top of the north and south tower respectively. Using the recorded wind data from SHMS, the joint distribution of wind speed and direction is investigated based on statistical methods, and then the basic wind speeds in 10-year and 100-year recurrence intervals at these four key positions are calculated. Analytical results verify the reliability of the recorded wind data from SHMS, and indicate that the joint probability model for the extreme wind speed at SCB site fits well with the Weibull model. It is shown that the calculated basic wind speed is reduced by considering the influence of wind direction. Compared to the design basic wind speed in the Specification of China, basic wind speed considering the influence of direction or not is much smaller, indicating a high safety coefficient in the design of SCB. The results obtained in this study can provide not only references for further wind-resistance research of SCB, but also improve the understanding of the safety coefficient for wind-resistance design of other engineering structures in the similar area.

Improving Lifetime Prediction Modeling for SiON Dielectric nMOSFETs with Time-Dependent Dielectric Breakdown Degradation (SiON 절연층 nMOSFET의 Time Dependent Dielectric Breakdown 열화 수명 예측 모델링 개선)

  • Yeohyeok Yun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.4
    • /
    • pp.173-179
    • /
    • 2023
  • This paper analyzes the time-dependent dielectric breakdown(TDDB) degradation mechanism for each stress region of Peri devices manufactured by 4th generation VNAND process, and presents a complementary lifetime prediction model that improves speed and accuracy in a wider reliability evaluation region compared to the conventional model presented. SiON dielectric nMOSFETs were measured 10 times each under 5 constant voltage stress(CVS) conditions. The analysis of stress-induced leakage current(SILC) confirmed the significance of the field-based degradation mechanism in the low electric field region and the current-based degradation mechanism in the high field region. Time-to-failure(TF) was extracted from Weibull distribution to ascertain the lifetime prediction limitations of the conventional E-model and 1/E-model, and a parallel complementary model including both electric field and current based degradation mechanisms was proposed by extracting and combining the thermal bond breakage rate constant(k) of each model. Finally, when predicting the lifetime of the measured TDDB data, the proposed complementary model predicts lifetime faster and more accurately, even in the wider electric field region, compared to the conventional E-model and 1/E-model.

High Temperature Reliability Study of Low Frequency In-door Electrodeless Lamp (무전극형광램프의 고온 신뢰성 연구)

  • Jeong, Ui-Hyo;Hyung, Jae-Phil;Lim, Seong-Yong;Lim, Hong-Woo;Jang, Joong-Soon
    • Journal of Applied Reliability
    • /
    • v.14 no.3
    • /
    • pp.203-207
    • /
    • 2014
  • Electrodeless lamp is famous for its long life. But its reliability is dependent not only on electrodes but also on materials and structures. To evaluate end product's reliability, we studied high temperature durability by $60^{\circ}C$, $75^{\circ}C$ and $90^{\circ}C$ temperature tests, and predicted failure times by an exponential model through regression analysis. However, the test showed that temperature does not affect degradation of electrodeless lamps. Their luminous outputs degrade during the early time of the test (till 250 hours) and then converge to a saturation points. Also, '410nm ~ 530nm' spectrum degrades more than other spectra.

Evaluation of Breakdown Strength on the Locally Dented Power Cable (초고압 XLPE 케이블의 국부적 늘림에 대한 파괴강도 고찰)

  • Kim, Y.H.;Lee, S.J.;Cho, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.251-254
    • /
    • 2001
  • Internal and external forces may be applied on the power cable in the both process of transportation and installation. Even though the EHV power cables have the structure of metal sheath and plastic jacket etc. to minimize these negative influences, the unusual forces result in the unexpected deformation of the cable. Compressing moulded XLPE model cable sheets were prepared and locally dented with round-edge and square-edge tools. All data were analyzed employing Weibull distribution. The breakdown strength of dented molded specimens showed lower values than the normal ones by 10-60%.

  • PDF

Economic Design of Zero-Failure Reliability Qualification Test (경제적인 무고장 신뢰성 인증시험 설계)

  • Kwon, Young-Il
    • Journal of Korean Society for Quality Management
    • /
    • v.39 no.1
    • /
    • pp.71-77
    • /
    • 2011
  • In the fields of reliability application, the most commonly used test methods for reliability qualification are zero failure tests since they require fewer test samples and less test time compared to other test methods that guarantee the same reliability with a given confidence level. An economic zero failure test plan is developed that minimizes the total cost related to perform a life test to guarantee a specified reliability of a product with a given confidence level and a numerical example is provided to illustrate the use of the proposed test method.

An Accelerated Life Test of Thermoelectric Module for Water Purifier (정수기 적용 열전모듈의 가속수명시험)

  • Moon, Ji Seob;Lee, Sung Min;Jeong, Seon Yong;Kim, Myung Soo
    • Journal of Applied Reliability
    • /
    • v.14 no.1
    • /
    • pp.21-28
    • /
    • 2014
  • This paper presents an accelerated life test to estimate the lifetime of thermoelectric module for home water purifier. Clamping force and thermal cycle are selected as accelerating variables through the technical review about failure mechanism. It is assumed that its lifetime follows weibull distribution. The relationship, acceleration factor, and BP life at design condition are estimated by analyzing the accelerated life test data.

Development of Application Program for Fatigue Characteristics of Engineering Plastics (엔지니어링 플라스틱 소재의 피로특성에 대한 응용프로그램 개발)

  • Jang, Cheon-Soo;Park, Bum-Gyu;Kim, Chul-Su;Kim, Jung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.154-159
    • /
    • 2004
  • In this study, in order to perform more efficiently reliability design and integrity assessment of structural members, the relational database management program on the engineering plastics was constructed. This program contained 476 grades for 14 kinds of the engineering plastics and was developed using MS-access and MS-visualbasic. This program consists of 3 modules; search condition, probabilistic characteristics of material property, evaluation of P-S-N curve. We perform fatigue test for probabilistic durability analysis and this results input the database program to estimate P-S-N.

  • PDF

Analysis of Wind Energy Resource & Case study for Wind Park Siting (풍력발전단지 개발을 위한 풍자원 해석 및 단지 설계)

  • Byun, Hyo-In;Ryu, Ji-Yune;Kim, Doo-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.21-24
    • /
    • 2005
  • This study explains the procedure that should be taken to develop a successful wind park project. It Provide guideline for activities and studies to be done step by step solution. This study follow a chronological flow through the development process. They cover Technical consideration, Assessment of Wind Energy Resource, Wind park siting and Energy yield calculation. It's build on the experience gained by the Youngduk Wind Park project and give the playa role in the development of wind energy projects. It is important to understand all theses issues if a new project is to be successfully completed.

  • PDF

The Variations of Design Parameters for Small Scale Hydro Power Plant with Rainfall Condition (강우상태에 의한 소수력발전소 설계변수의 변화)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.138-141
    • /
    • 2008
  • The effects of design parameters for small scale hydro power(SSHP) plants due to rainfall condition have been studied. The model to predict hydrologic performance for SSHP plants is used in this study. The results from analysis for rainfall conditions based on Weibull distribution show that the capacity and load factor of SSHP site had large difference between the variation of shape and scale parameter. Especially, the hydrologic performance of SSHP site due to variation of shape parameter varied more sensitive than the case of variation of scale parameter. And also, the methodology represented in this study can be used to decide the primary design specifications of SSHP sites.

  • PDF