• Title/Summary/Keyword: Web-crawling

Search Result 177, Processing Time 0.023 seconds

Development of Yóukè Mining System with Yóukè's Travel Demand and Insight Based on Web Search Traffic Information (웹검색 트래픽 정보를 활용한 유커 인바운드 여행 수요 예측 모형 및 유커마이닝 시스템 개발)

  • Choi, Youji;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.155-175
    • /
    • 2017
  • As social data become into the spotlight, mainstream web search engines provide data indicate how many people searched specific keyword: Web Search Traffic data. Web search traffic information is collection of each crowd that search for specific keyword. In a various area, web search traffic can be used as one of useful variables that represent the attention of common users on specific interests. A lot of studies uses web search traffic data to nowcast or forecast social phenomenon such as epidemic prediction, consumer pattern analysis, product life cycle, financial invest modeling and so on. Also web search traffic data have begun to be applied to predict tourist inbound. Proper demand prediction is needed because tourism is high value-added industry as increasing employment and foreign exchange. Among those tourists, especially Chinese tourists: Youke is continuously growing nowadays, Youke has been largest tourist inbound of Korea tourism for many years and tourism profits per one Youke as well. It is important that research into proper demand prediction approaches of Youke in both public and private sector. Accurate tourism demands prediction is important to efficient decision making in a limited resource. This study suggests improved model that reflects latest issue of society by presented the attention from group of individual. Trip abroad is generally high-involvement activity so that potential tourists likely deep into searching for information about their own trip. Web search traffic data presents tourists' attention in the process of preparation their journey instantaneous and dynamic way. So that this study attempted select key words that potential Chinese tourists likely searched out internet. Baidu-Chinese biggest web search engine that share over 80%- provides users with accessing to web search traffic data. Qualitative interview with potential tourists helps us to understand the information search behavior before a trip and identify the keywords for this study. Selected key words of web search traffic are categorized by how much directly related to "Korean Tourism" in a three levels. Classifying categories helps to find out which keyword can explain Youke inbound demands from close one to far one as distance of category. Web search traffic data of each key words gathered by web crawler developed to crawling web search data onto Baidu Index. Using automatically gathered variable data, linear model is designed by multiple regression analysis for suitable for operational application of decision and policy making because of easiness to explanation about variables' effective relationship. After regression linear models have composed, comparing with model composed traditional variables and model additional input web search traffic data variables to traditional model has conducted by significance and R squared. after comparing performance of models, final model is composed. Final regression model has improved explanation and advantage of real-time immediacy and convenience than traditional model. Furthermore, this study demonstrates system intuitively visualized to general use -Youke Mining solution has several functions of tourist decision making including embed final regression model. Youke Mining solution has algorithm based on data science and well-designed simple interface. In the end this research suggests three significant meanings on theoretical, practical and political aspects. Theoretically, Youke Mining system and the model in this research are the first step on the Youke inbound prediction using interactive and instant variable: web search traffic information represents tourists' attention while prepare their trip. Baidu web search traffic data has more than 80% of web search engine market. Practically, Baidu data could represent attention of the potential tourists who prepare their own tour as real-time. Finally, in political way, designed Chinese tourist demands prediction model based on web search traffic can be used to tourism decision making for efficient managing of resource and optimizing opportunity for successful policy.

Structural Assets of Local Broadcasting Networks and Regional Gap: Foucsing on Local MBC stations in South Korea (지역 방송국 네트워크의 구조적 자산(asset)과 지역 간 격차: 지역MBC를 중심으로)

  • Son, Ji-Hoon;Lee, Jung-Min;Kim, Jae-Hun;Park, Han-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.9
    • /
    • pp.194-204
    • /
    • 2022
  • This study examined the social capital and geographical gaps of local television stations using web data gathered through website crawling. URLs for 16 local MBC websites were collected. MBC is an abbreviation for Munhwa Broadcasting Corporation, one of South Korea's largest television and radio broadcasters. Munhwa is a Sino-Korean term that means "culture." It initially determined which institutions local broadcasting stations were linked to using a Web Impact Report. To investigate the specific connection type, URL information was classified using the n-tuple helix model, followed by 2-mode network analysis. The n-tuple helix model is an analysis method that extends the standard university-business-government triple-helix model by including a new network innovation originator. As a result, local broadcasting stations relied heavily on activities like as festivals, performances, and exhibitions to engage the local community. Local stations in Daegu-Gyeongbuk area and the Busan-Ulsan-Gyeongnam area were identified as having the most diverse connections to the local population among other regions.

User-Perspective Issue Clustering Using Multi-Layered Two-Mode Network Analysis (다계층 이원 네트워크를 활용한 사용자 관점의 이슈 클러스터링)

  • Kim, Jieun;Kim, Namgyu;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.93-107
    • /
    • 2014
  • In this paper, we report what we have observed with regard to user-perspective issue clustering based on multi-layered two-mode network analysis. This work is significant in the context of data collection by companies about customer needs. Most companies have failed to uncover such needs for products or services properly in terms of demographic data such as age, income levels, and purchase history. Because of excessive reliance on limited internal data, most recommendation systems do not provide decision makers with appropriate business information for current business circumstances. However, part of the problem is the increasing regulation of personal data gathering and privacy. This makes demographic or transaction data collection more difficult, and is a significant hurdle for traditional recommendation approaches because these systems demand a great deal of personal data or transaction logs. Our motivation for presenting this paper to academia is our strong belief, and evidence, that most customers' requirements for products can be effectively and efficiently analyzed from unstructured textual data such as Internet news text. In order to derive users' requirements from textual data obtained online, the proposed approach in this paper attempts to construct double two-mode networks, such as a user-news network and news-issue network, and to integrate these into one quasi-network as the input for issue clustering. One of the contributions of this research is the development of a methodology utilizing enormous amounts of unstructured textual data for user-oriented issue clustering by leveraging existing text mining and social network analysis. In order to build multi-layered two-mode networks of news logs, we need some tools such as text mining and topic analysis. We used not only SAS Enterprise Miner 12.1, which provides a text miner module and cluster module for textual data analysis, but also NetMiner 4 for network visualization and analysis. Our approach for user-perspective issue clustering is composed of six main phases: crawling, topic analysis, access pattern analysis, network merging, network conversion, and clustering. In the first phase, we collect visit logs for news sites by crawler. After gathering unstructured news article data, the topic analysis phase extracts issues from each news article in order to build an article-news network. For simplicity, 100 topics are extracted from 13,652 articles. In the third phase, a user-article network is constructed with access patterns derived from web transaction logs. The double two-mode networks are then merged into a quasi-network of user-issue. Finally, in the user-oriented issue-clustering phase, we classify issues through structural equivalence, and compare these with the clustering results from statistical tools and network analysis. An experiment with a large dataset was performed to build a multi-layer two-mode network. After that, we compared the results of issue clustering from SAS with that of network analysis. The experimental dataset was from a web site ranking site, and the biggest portal site in Korea. The sample dataset contains 150 million transaction logs and 13,652 news articles of 5,000 panels over one year. User-article and article-issue networks are constructed and merged into a user-issue quasi-network using Netminer. Our issue-clustering results applied the Partitioning Around Medoids (PAM) algorithm and Multidimensional Scaling (MDS), and are consistent with the results from SAS clustering. In spite of extensive efforts to provide user information with recommendation systems, most projects are successful only when companies have sufficient data about users and transactions. Our proposed methodology, user-perspective issue clustering, can provide practical support to decision-making in companies because it enhances user-related data from unstructured textual data. To overcome the problem of insufficient data from traditional approaches, our methodology infers customers' real interests by utilizing web transaction logs. In addition, we suggest topic analysis and issue clustering as a practical means of issue identification.

A Study on Detecting Fake Reviews Using Machine Learning: Focusing on User Behavior Analysis (머신러닝을 활용한 가짜리뷰 탐지 연구: 사용자 행동 분석을 중심으로)

  • Lee, Min Cheol;Yoon, Hyun Shik
    • Knowledge Management Research
    • /
    • v.21 no.3
    • /
    • pp.177-195
    • /
    • 2020
  • The social consciousness on fake reviews has triggered researchers to suggest ways to cope with them by analyzing contents of fake reviews or finding ways to discover them by means of structural characteristics of them. This research tried to collect data from blog posts in Naver and detect habitual patterns users use unconsciously by variables extracted from blogs and blog posts by a machine learning model and wanted to use the technique in predicting fake reviews. Data analysis showed that there was a very high relationship between the number of all the posts registered in the blog of the writer of the related writing and the date when it was registered. And, it was found that, as model to detect advertising reviews, Random Forest is the most suitable. If a review is predicted to be an advertising one by the model suggested in this research, it is very likely that it is fake review, and that it violates the guidelines on investigation into markings and advertising regarding recommendation and guarantee in the Law of Marking and Advertising. The fact that, instead of using analysis of morphemes in contents of writings, this research adopts behavior analysis of the writer, and, based on such an approach, collects characteristic data of blogs and blog posts not by manual works, but by automated system, and discerns whether a certain writing is advertising or not is expected to have positive effects on improving efficiency and effectiveness in detecting fake reviews.

Sensitivity Identification Method for New Words of Social Media based on Naive Bayes Classification (나이브 베이즈 기반 소셜 미디어 상의 신조어 감성 판별 기법)

  • Kim, Jeong In;Park, Sang Jin;Kim, Hyoung Ju;Choi, Jun Ho;Kim, Han Il;Kim, Pan Koo
    • Smart Media Journal
    • /
    • v.9 no.1
    • /
    • pp.51-59
    • /
    • 2020
  • From PC communication to the development of the internet, a new term has been coined on the social media, and the social media culture has been formed due to the spread of smart phones, and the newly coined word is becoming a culture. With the advent of social networking sites and smart phones serving as a bridge, the number of data has increased in real time. The use of new words can have many advantages, including the use of short sentences to solve the problems of various letter-limited messengers and reduce data. However, new words do not have a dictionary meaning and there are limitations and degradation of algorithms such as data mining. Therefore, in this paper, the opinion of the document is confirmed by collecting data through web crawling and extracting new words contained within the text data and establishing an emotional classification. The progress of the experiment is divided into three categories. First, a word collected by collecting a new word on the social media is subjected to learned of affirmative and negative. Next, to derive and verify emotional values using standard documents, TF-IDF is used to score noun sensibilities to enter the emotional values of the data. As with the new words, the classified emotional values are applied to verify that the emotions are classified in standard language documents. Finally, a combination of the newly coined words and standard emotional values is used to perform a comparative analysis of the technology of the instrument.

Determination of Fire Risk Assessment Indicators for Building using Big Data (빅데이터를 활용한 건축물 화재위험도 평가 지표 결정)

  • Joo, Hong-Jun;Choi, Yun-Jeong;Ok, Chi-Yeol;An, Jae-Hong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.3
    • /
    • pp.281-291
    • /
    • 2022
  • This study attempts to use big data to determine the indicators necessary for a fire risk assessment of buildings. Because most of the causes affecting the fire risk of buildings are fixed as indicators considering only the building itself, previously only limited and subjective assessment has been performed. Therefore, if various internal and external indicators can be considered using big data, effective measures can be taken to reduce the fire risk of buildings. To collect the data necessary to determine indicators, a query language was first selected, and professional literature was collected in the form of unstructured data using a web crawling technique. To collect the words in the literature, pre-processing was performed such as user dictionary registration, duplicate literature, and stopwords. Then, through a review of previous research, words were classified into four components, and representative keywords related to risk were selected from each component. Risk-related indicators were collected through analysis of related words of representative keywords. By examining the indicators according to their selection criteria, 20 indicators could be determined. This research methodology indicates the applicability of big data analysis for establishing measures to reduce fire risk in buildings, and the determined risk indicators can be used as reference materials for assessment.

Suitable clothing recommendation system by size and skin color (의류 사이즈별 및 피부톤에 기반을 둔 의류 추천 시스템)

  • Park, Chang-Young;Lim, Byeong-Chan;Lee, Won-Joon;Lee, Chang-Su;Kim, Min-Su;Lee, Sang-Yong
    • Journal of Digital Convergence
    • /
    • v.20 no.3
    • /
    • pp.407-413
    • /
    • 2022
  • Existing clothing recommendation systems remain at the level of showing appropriate photos when a user selects a type of clothing he or she likes after entering his or her own body size or body size. When a user purchases clothing using such recommendation systems, there are many cases in which it does not fit or does not fit the user's body size. In this study, to solve these problems of existing clothing recommendation systems, a system was implemented in which the user receives not only size but also skin tone and recommends clothing suitable for the user's body size as well as skin tone. In this system, clothing size information obtained through web crawling was periodically stored in a database for eight male tops to recommend clothing, and the entire pixel of the clothing image was analyzed to extract color text values. In order to confirm the performance of this system, a survey was conducted on 100 male college students, and the satisfaction level was 70%. Most of the reasons for not being satisfied are that the recommended clothing is limited, so it is judged that it is necessary to expand the target clothing in the future.

Media exposure analysis of official sponsors and general companies of mega sport event (메가 스포츠이벤트의 공식스폰서와 일반기업의 미디어 노출 분석)

  • Kim, Joo-Hak;Cho, Sun-Mi
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.4
    • /
    • pp.171-181
    • /
    • 2018
  • As the proportion of sports events in the sports industry grows, the official sponsor market for sports events is also increasing. But because official sponsors are limited and expensive, some companies approach sporting events by way of Ambush marketing. This study is to analyze the differences of media exposure between official sponsors and general companies of mega sport events. To accomplish the purpose of the study, we collected text articles and analyzed them from the period of 2016 Rio Olympics, one year before the Olympics and one year after the Olympics. Web crawling was performed using Python for the collection of articles. Morphological and frequency analysis was performed using the KoNLP package and the TM package of statistical program R. In addition, the opinions of the related experts group were gathered to classify the companies or organizations in the media as the Organizing Committees for the Olympic Games(OCOGs), official sponsor, and general companies. As a result of the analysis, 5,220 times appeared related to the OCOGs, 7,845 times appeared related to the official sponsor, and 7,028 times appeared related to general companies. There isn't much difference in the frequency of exposure between official sponsors and general companies. It implies that Ambush marketing is recognized as a strategic marketing technique. The International Olympic Committee(IOC) has to recognize these social phenomena and establish reasonable standards for the marketing activities of official sponsors and general companies. And this study will serve as a basis for fair sponsor activities or marketing activities of sports events.

Examining the Urban Growth Process of the 1st New Town -Focusing on the Keyword Network Analysis of Newspaper Articles using Text Mining- (1기 신도시의 도시 성장 과정 고찰 - 텍스트마이닝을 이용한 신문기사의 키워드 네트워크 분석을 중심으로 -)

  • Jung, Da-Eun;Kim, Chung Ho
    • Journal of the Korean Regional Science Association
    • /
    • v.39 no.4
    • /
    • pp.91-110
    • /
    • 2023
  • The purpose of this study is to explore urban issues that have arisen in the urban growth process of the 1st New Town for about 34 years since its construction through newspaper articles. For this purpose, newspaper articles related to the 1st New Town were collected using web crawling, and content analysis was conducted based on text mining. The main findings of the study are as follows. First, in the early stages of the construction of the 1st New Town, issues were diverse in the following six sectors: living service facilities, real estate, transportation, urban development and maintenance, safety, and housing supply, but gradually narrowed down to those of real estate and urban development and maintenance. Second, during the new town construction and urban stabilization stages, the network structure centered on 'Seoul' was maintained, which can be explained by the fact that the 1st New Town was geographically located on the outskirts of Seoul, and many articles compared the issues to Seoul. Third, the issue of urban aging appeared from the 10th year after construction, and the discussion on urban reorganization due to urban aging began in earnest from the 30th year after construction. The significance of the study is that it explored the urban issues that occurred throughout the urban growth process of the 1st New Town, and can be used as a basis for preparing a plan to reorganize the 1st New Town.

Sentiment Analyses of the Impacts of Online Experience Subjectivity on Customer Satisfaction (감성분석을 이용한 온라인 체험 내 비정형데이터의 주관도가 고객만족에 미치는 영향 분석)

  • Yeeun Seo;Sang-Yong Tom Lee
    • Information Systems Review
    • /
    • v.25 no.1
    • /
    • pp.233-255
    • /
    • 2023
  • The development of information technology(IT) has brought so-called "online experience" to satisfy our daily needs. The market for online experiences grew more during the COVID-19 pandemic. Therefore, this study attempted to analyze how the features of online experience services affect customer satisfaction by crawling structured and unstructured data from the online experience web site newly launched by Airbnb after COVID-19. As a result of the analysis, it was found that the structured data generated by service users on a C2C online sharing platform had a positive effect on the satisfaction of other users. In addition, unstructured text data such as experience introductions and host introductions generated by service providers turned out to have different subjectivity scores depending on the purpose of its text. It was confirmed that the subjective host introduction and the objective experience introduction affect customer satisfaction positively. The results of this study are to provide various implications to stakeholders of the online sharing economy platform and researchers interested in online experience knowledge management.