• Title/Summary/Keyword: Web-Application

Search Result 2,646, Processing Time 0.033 seconds

A Study on the Buyer's Decision Making Models for Introducing Intelligent Online Handmade Services (지능형 온라인 핸드메이드 서비스 도입을 위한 구매자 의사결정모형에 관한 연구)

  • Park, Jong-Won;Yang, Sung-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.119-138
    • /
    • 2016
  • Since the Industrial Revolution, which made the mass production and mass distribution of standardized goods possible, machine-made (manufactured) products have accounted for the majority of the market. However, in recent years, the phenomenon of purchasing even more expensive handmade products has become a noticeable trend as consumers have started to acknowledge the value of handmade products, such as the craftsman's commitment, belief in their quality and scarcity, and the sense of self-esteem from having them,. Consumer interest in these handmade products has shown explosive growth and has been coupled with the recent development of three-dimensional (3D) printing technologies. Etsy.com is the world's largest online handmade platform. It is no different from any other online platform; it provides an online market where buyers and sellers virtually meet to share information and transact business. However, Etsy.com is different in that shops within this platform only deal with handmade products in a variety of categories, ranging from jewelry to toys. Since its establishment in 2005, despite being limited to handmade products, Etsy.com has enjoyed rapid growth in membership, transaction volume, and revenue. Most recently in April 2015, it raised funds through an initial public offering (IPO) of more than 1.8 billion USD, which demonstrates the huge potential of online handmade platforms. After the success of Etsy.com, various types of online handmade platforms such as Handmade at Amazon, ArtFire, DaWanda, and Craft is ART have emerged and are now competing with each other, at the same time, which has increased the size of the market. According to Deloitte's 2015 holiday survey on which types of gifts the respondents plan to buy during the holiday season, about 16% of U.S. consumers chose "homemade or craft items (e.g., Etsy purchase)," which was the same rate as those for the computer game and shoes categories. This indicates that consumer interests in online handmade platforms will continue to rise in the future. However, this high interest in the market for handmade products and their platforms has not yet led to academic research. Most extant studies have only focused on machine-made products and intelligent services for them. This indicates a lack of studies on handmade products and their intelligent services on virtual platforms. Therefore, this study used signaling theory and prior research on the effects of sellers' characteristics on their performance (e.g., total sales and price premiums) in the buyer-seller relationship to identify the key influencing e-Image factors (e.g., reputation, size, information sharing, and length of relationship). Then, their impacts on the performance of shops within the online handmade platform were empirically examined; the dataset was collected from Etsy.com through the application of web harvesting technology. The results from the structural equation modeling revealed that the reputation, size, and information sharing have significant effects on the total sales, while the reputation and length of relationship influence price premiums. This study extended the online platform research into online handmade platform research by identifying key influencing e-Image factors on within-platform shop's total sales and price premiums based on signaling theory and then performed a statistical investigation. These findings are expected to be a stepping stone for future studies on intelligent online handmade services as well as handmade products themselves. Furthermore, the findings of the study provide online handmade platform operators with practical guidelines on how to implement intelligent online handmade services. They should also help shop managers build their marketing strategies in a more specific and effective manner by suggesting key influencing e-Image factors. The results of this study should contribute to the vitalization of intelligent online handmade services by providing clues on how to maximize within-platform shops' total sales and price premiums.

Stud and Puzzle-Strip Shear Connector for Composite Beam of UHPC Deck and Inverted-T Steel Girder (초고성능 콘크리트 바닥판과 역T형 강거더의 합성보를 위한 스터드 및 퍼즐스트립 전단연결재에 관한 연구)

  • Lee, Kyoung-Chan;Joh, Changbin;Choi, Eun-Suk;Kim, Jee-Sang
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.151-157
    • /
    • 2014
  • Since recently developed Ultra-High-Performance-Concrete (UHPC) provides very high strength, stiffness, and durability, many studies have been made on the application of the UHPC to bridge decks. Due to high strength and stiffness of UHPC bridge deck, the structural contribution of top flange of steel girder composite to UHPC deck would be much lower than that of conventional concrete deck. At this point of view, this study proposes a inverted-T shaped steel girder composite to UHPC deck. This girder requires a new type of shear connector because conventional shear connectors are welded on top flange. This study also proposes three different types of shear connectors, and evaluate their ultimate strength via push-out static test. The first one is a stud shear connector welded directly to the web of the girder in the transverse direction. The second one is a puzzle-strip type shear connector developed by the European Commission, and the last one is the combination of the stud and the puzzle-strip shear connectors. Experimental results showed that the ultimate strength of the transverse stud was 26% larger than that given in the AASHTO LRFD Bridge Design Specifications, but a splitting crack observed in the UHPC deck was so severe that another measure needs to be developed to prevent the splitting crack. The ultimate strength of the puzzle-strip specimen was 40% larger than that evaluated by the equation of European Commission. The specimens combined with stud and puzzle-strip shear connectors provided less strength than arithmetical sum of those. Based on the experimental observations, there appears to be no advantage of combining transverse stud and puzzle-strip shear connectors.

Survey of COPD Management among the Primary Care Physicians in Korea (우리나라 일차 진료의사의 만성폐쇄성폐질환(COPD) 진료실태조사)

  • Park, Myung Jae;Choi, Cheon Woong;Kim, Seung Joon;Kim, Young Kyoon;Lee, Sung Yong;Kang, Kyung Ho;Shin, Kyeong-Cheol;Lee, Kwan Ho;Lee, Jin Hwa;Kim, Yu-Il;Lim, Sung-Chul;Park, Yong Bum;Jung, Ki-Suck;Kim, Tae-Hyung;Shin, Dong Ho;Yoo, Jee-Hong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.64 no.2
    • /
    • pp.109-124
    • /
    • 2008
  • Background: The incidence of chronic obstructive pulmonary disease (COPD) is increasing and the disease is becoming an important cause of morbidity and mortality worldwide. It is important to implement evidence-based guidelines by primary care physicians (PCPs) to establish qualified management of COPD patients. The aim of this survey is to investigate the pattern of COPD management among PCPs and to apply it to the development of Korean COPD guidelines. Methods: A web-based questionnaire was prepared that consisted of 25 questions on the pattern of COPD management. A total of 217 PCPs participated in the survey from June 2006 to May 2007. Results: Many PCPs (61.8%) possessed a spirometer, but the application rate was relatively low (35.8%) and more than half of the COPD patients (57%) did not receive a diagnosis based on spirometry. Administration of oral medication was preferred than the administration of inhaled medication for both stable COPD and acutely exacerbated COPD. More than 90% of the PCPs endorsed educational measures to quit smoking and vaccinate against influenza. It was noted that 56.7% of the PCPs were aware of the GOLD guidelines, but only 7.3% tended to fully implement the recommendations of the guidelines in daily practice. Conclusion: The results of the survey indicate that despite the high awareness rate of the current COPD guidelines, deficits exist among the PCPs with respect to the diagnosis and treatment of COPD. The results of this survey should be applied for the development of new COPD guidelines in order to decrease the discrepancy between the guidelines and the daily practice of the PCPs.

Features of Korean Webtoons through the Statistical Analysis (웹툰 통계 분석을 통한 한국 웹툰의 특징)

  • Yoon, Ki-Heon;Jung, Kiu-Ha;Choi, In-Soo;Choi, Hae-Sol
    • Cartoon and Animation Studies
    • /
    • s.38
    • /
    • pp.177-194
    • /
    • 2015
  • This study that had been conducted two months by a research team of Pusan National University at the request of Korea Manwha Contents Agency in Dec. 2013 is about the statistical analysis on 'Korean Webtoon DB and its Flow Report' which resulted from the complete survey of Korean webtoons which had been published with payment in official media from early 2000 to 2013. Webtoon which means the cartoons published on web has become a typical type of Korean cartoons and has developed into a main industry since 2000s when traditional published cartoons had declined and social environments had changed. Today, it represents cultural contents in Korea. This study collected the webtoons officially published in media with payment, among Korean webtoons having been published from the early 2000s to Jan. Based on the collected data, it analyzed the general characteristics of webtoons, including cartoonists, the number of cartoons, distribution chart of each media, genre, and publication cycle. According to the data analysis and statistics, a great deal of Korean webtoons are still published in main portal websites, but their platform is being diversified and a webtoon's publication cycle tends to be shortened. In terms of genre, traditional popular genres, such as drama, comic, fantasy, and action, are still popular, and the genres of history, sports, and food are on the rise along with a social trend. Regarding webtoon application, such events as relay webtoon and brand webtoon, and a new type of webtoon featuring PPL commercialism appear. Such phenomena can realize the common profits of cartoonists, media, and ordering bodies, and are various trials to test the possibility of webtoons. In addition, what needs to pay attention on in the expansion of webtoons is increasing webtoons for adults. The study subjects are the webtoons published with payment, excluding free webtoons. However, this study failed to collect the webtoons published on the online websites already closed, and the lost information on cartoonists and their lost webtoons, and it is necessary to conduct a complete survey on all webtoons including free ones. Despite the limitations, this study is meaningful in the points that it categorized and analyzed Korean webtoons accoridng to official media, webtoons, cartoonists, and genres and that it provided a fundamental material to understand the current conditions of webtoons. It is expected that this study will be able to contribute to activating more research on webtoons and producing more supplementary data which will be used for the Korean cartoon industry and academia.

Building a Korean Sentiment Lexicon Using Collective Intelligence (집단지성을 이용한 한글 감성어 사전 구축)

  • An, Jungkook;Kim, Hee-Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.49-67
    • /
    • 2015
  • Recently, emerging the notion of big data and social media has led us to enter data's big bang. Social networking services are widely used by people around the world, and they have become a part of major communication tools for all ages. Over the last decade, as online social networking sites become increasingly popular, companies tend to focus on advanced social media analysis for their marketing strategies. In addition to social media analysis, companies are mainly concerned about propagating of negative opinions on social networking sites such as Facebook and Twitter, as well as e-commerce sites. The effect of online word of mouth (WOM) such as product rating, product review, and product recommendations is very influential, and negative opinions have significant impact on product sales. This trend has increased researchers' attention to a natural language processing, such as a sentiment analysis. A sentiment analysis, also refers to as an opinion mining, is a process of identifying the polarity of subjective information and has been applied to various research and practical fields. However, there are obstacles lies when Korean language (Hangul) is used in a natural language processing because it is an agglutinative language with rich morphology pose problems. Therefore, there is a lack of Korean natural language processing resources such as a sentiment lexicon, and this has resulted in significant limitations for researchers and practitioners who are considering sentiment analysis. Our study builds a Korean sentiment lexicon with collective intelligence, and provides API (Application Programming Interface) service to open and share a sentiment lexicon data with the public (www.openhangul.com). For the pre-processing, we have created a Korean lexicon database with over 517,178 words and classified them into sentiment and non-sentiment words. In order to classify them, we first identified stop words which often quite likely to play a negative role in sentiment analysis and excluded them from our sentiment scoring. In general, sentiment words are nouns, adjectives, verbs, adverbs as they have sentimental expressions such as positive, neutral, and negative. On the other hands, non-sentiment words are interjection, determiner, numeral, postposition, etc. as they generally have no sentimental expressions. To build a reliable sentiment lexicon, we have adopted a concept of collective intelligence as a model for crowdsourcing. In addition, a concept of folksonomy has been implemented in the process of taxonomy to help collective intelligence. In order to make up for an inherent weakness of folksonomy, we have adopted a majority rule by building a voting system. Participants, as voters were offered three voting options to choose from positivity, negativity, and neutrality, and the voting have been conducted on one of the largest social networking sites for college students in Korea. More than 35,000 votes have been made by college students in Korea, and we keep this voting system open by maintaining the project as a perpetual study. Besides, any change in the sentiment score of words can be an important observation because it enables us to keep track of temporal changes in Korean language as a natural language. Lastly, our study offers a RESTful, JSON based API service through a web platform to make easier support for users such as researchers, companies, and developers. Finally, our study makes important contributions to both research and practice. In terms of research, our Korean sentiment lexicon plays an important role as a resource for Korean natural language processing. In terms of practice, practitioners such as managers and marketers can implement sentiment analysis effectively by using Korean sentiment lexicon we built. Moreover, our study sheds new light on the value of folksonomy by combining collective intelligence, and we also expect to give a new direction and a new start to the development of Korean natural language processing.

Social Network Analysis for the Effective Adoption of Recommender Systems (추천시스템의 효과적 도입을 위한 소셜네트워크 분석)

  • Park, Jong-Hak;Cho, Yoon-Ho
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.305-316
    • /
    • 2011
  • Recommender system is the system which, by using automated information filtering technology, recommends products or services to the customers who are likely to be interested in. Those systems are widely used in many different Web retailers such as Amazon.com, Netfix.com, and CDNow.com. Various recommender systems have been developed. Among them, Collaborative Filtering (CF) has been known as the most successful and commonly used approach. CF identifies customers whose tastes are similar to those of a given customer, and recommends items those customers have liked in the past. Numerous CF algorithms have been developed to increase the performance of recommender systems. However, the relative performances of CF algorithms are known to be domain and data dependent. It is very time-consuming and expensive to implement and launce a CF recommender system, and also the system unsuited for the given domain provides customers with poor quality recommendations that make them easily annoyed. Therefore, predicting in advance whether the performance of CF recommender system is acceptable or not is practically important and needed. In this study, we propose a decision making guideline which helps decide whether CF is adoptable for a given application with certain transaction data characteristics. Several previous studies reported that sparsity, gray sheep, cold-start, coverage, and serendipity could affect the performance of CF, but the theoretical and empirical justification of such factors is lacking. Recently there are many studies paying attention to Social Network Analysis (SNA) as a method to analyze social relationships among people. SNA is a method to measure and visualize the linkage structure and status focusing on interaction among objects within communication group. CF analyzes the similarity among previous ratings or purchases of each customer, finds the relationships among the customers who have similarities, and then uses the relationships for recommendations. Thus CF can be modeled as a social network in which customers are nodes and purchase relationships between customers are links. Under the assumption that SNA could facilitate an exploration of the topological properties of the network structure that are implicit in transaction data for CF recommendations, we focus on density, clustering coefficient, and centralization which are ones of the most commonly used measures to capture topological properties of the social network structure. While network density, expressed as a proportion of the maximum possible number of links, captures the density of the whole network, the clustering coefficient captures the degree to which the overall network contains localized pockets of dense connectivity. Centralization reflects the extent to which connections are concentrated in a small number of nodes rather than distributed equally among all nodes. We explore how these SNA measures affect the performance of CF performance and how they interact to each other. Our experiments used sales transaction data from H department store, one of the well?known department stores in Korea. Total 396 data set were sampled to construct various types of social networks. The dependant variable measuring process consists of three steps; analysis of customer similarities, construction of a social network, and analysis of social network patterns. We used UCINET 6.0 for SNA. The experiments conducted the 3-way ANOVA which employs three SNA measures as dependant variables, and the recommendation accuracy measured by F1-measure as an independent variable. The experiments report that 1) each of three SNA measures affects the recommendation accuracy, 2) the density's effect to the performance overrides those of clustering coefficient and centralization (i.e., CF adoption is not a good decision if the density is low), and 3) however though the density is low, the performance of CF is comparatively good when the clustering coefficient is low. We expect that these experiment results help firms decide whether CF recommender system is adoptable for their business domain with certain transaction data characteristics.

The application of photographs resources for constructive social studies (구성주의적 사회과 교육을 위한 사진자료 활용방안)

  • Lee, Ki-Bok;Hwang, Hong-Seop
    • Journal of the Korean association of regional geographers
    • /
    • v.6 no.3
    • /
    • pp.117-138
    • /
    • 2000
  • This study is, from the view point of constructive social studies which is the foundation of the 7th curriculum, to explore whether there is any viable program and to investigate it by which students, using photo resources in social studies, can organize their knowledge in the way of self-directed thinking. The main results are as follows: If it is a principle of knowledge construction process of constructive social studies that individual construction (cognitive construction) develops into communal construction(social construction) and yet communal construction develops itself, interacting with individual construction, it will be meet the objectives of social studies. In social studies, photos are a powerful communication tool. communicating with photos enables to invoke not only the visual aspects but also invisible aspects of social phenomena from photos. It, therefore, can help develop thinking power through inquiry learning, which is one of the emphasis of the 7th curriculum. Having analyzed photo resources appeared on the regional textbooks in elementary social studies, they have been appeared that even though the importance and amount of space photo resources occupy per page is big with regard to total resources, most of the photos failed to lad to self-directed thinking but just assistant material in stead. Besides, there appeared some problems with the title, variety, size, position, tone of color, visibility of the photos, and further with the combination of the photos. Developing of photo resources for constructive social studies is to overcome some problems inherent in current text books and to reflect the theoretical background of the 7th curriculum. To develop the sort of photo that can realize the point just mentioned, it would be highly preferable to provide photo database to facilitate study with homepage through web-based interaction. To take advantage of constructive photo resources, the instruction is strategized in four stages, intuition, conflict, accommodation, and equilibration stage. With the advancement of the era of image culture, curriculum developers are required to develop dynamic, multidimensional digital photos rather than static photos when develop text books.

  • PDF

Comparison of the Working Conditions of Dental Hygienists Using Data from Online Job Sites (구인 사이트에 나타난 치과규모별 치과위생사 근무조건의 비교)

  • Oh, Eun-Ju;Hwang, Soo-Jeong
    • Journal of dental hygiene science
    • /
    • v.17 no.6
    • /
    • pp.501-507
    • /
    • 2017
  • The shortage of dental hygienists has been a long-standing problem in Korea. Small-scaled dental clinics suffer from a lack of dental hygienists, who seem to prefer working at large-scaled dental clinics. The purpose of this study was to confirm the differences in the working conditions according to the scales of dental clinics. We collected the working information registered via job advertisements through the web-sites of Korean Dental Hygienists Association, Dental Jobs, and Nurse Jobs from July to August 2016. The results were as follows: 96.7% of the advertisements wanted regular workers, while the proportion of part-time workers was the highest (34.8%) in the group with less than 3 employees. The average workdays per week was $5.32{\pm}0.55$ days, and the group with less than 3 employees had significantly longer workdays than the other groups. The daily working time was $8.99{\pm}0.44$ hours, and there was no difference among the groups. Night overtime hours were needed by 54.4%, 45.0%, and 31.3% of the groups with of the groups with 4~7 employees, more than 8 employees, and less than 3 employees, respectively. Information regarding annual leave (60.5%), monthly leave (63.9%), half a day off (32.4%) and vacations (43.1%) were presented in the job advertisements, and these proportions were significantly higher by the group with more than 8 employees. Information on overtime pay (14.4%), night-work pay (13.4%), incentives (34.1%), lunches (60.2%), vacation bonuses (33.8%), and self-development (20.4%) were presented in job advertisements. The group with 4~7 employees had significantly higher proportions in severance pay, vacation bonuses, self-development, and major national insurance. It is necessary to consider the improvement of working conditions, diversity of working styles, and welfare of dental hygienists, and it is suggested that small dental clinics provide more precise working conditions.

Predicting the Performance of Recommender Systems through Social Network Analysis and Artificial Neural Network (사회연결망분석과 인공신경망을 이용한 추천시스템 성능 예측)

  • Cho, Yoon-Ho;Kim, In-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.159-172
    • /
    • 2010
  • The recommender system is one of the possible solutions to assist customers in finding the items they would like to purchase. To date, a variety of recommendation techniques have been developed. One of the most successful recommendation techniques is Collaborative Filtering (CF) that has been used in a number of different applications such as recommending Web pages, movies, music, articles and products. CF identifies customers whose tastes are similar to those of a given customer, and recommends items those customers have liked in the past. Numerous CF algorithms have been developed to increase the performance of recommender systems. Broadly, there are memory-based CF algorithms, model-based CF algorithms, and hybrid CF algorithms which combine CF with content-based techniques or other recommender systems. While many researchers have focused their efforts in improving CF performance, the theoretical justification of CF algorithms is lacking. That is, we do not know many things about how CF is done. Furthermore, the relative performances of CF algorithms are known to be domain and data dependent. It is very time-consuming and expensive to implement and launce a CF recommender system, and also the system unsuited for the given domain provides customers with poor quality recommendations that make them easily annoyed. Therefore, predicting the performances of CF algorithms in advance is practically important and needed. In this study, we propose an efficient approach to predict the performance of CF. Social Network Analysis (SNA) and Artificial Neural Network (ANN) are applied to develop our prediction model. CF can be modeled as a social network in which customers are nodes and purchase relationships between customers are links. SNA facilitates an exploration of the topological properties of the network structure that are implicit in data for CF recommendations. An ANN model is developed through an analysis of network topology, such as network density, inclusiveness, clustering coefficient, network centralization, and Krackhardt's efficiency. While network density, expressed as a proportion of the maximum possible number of links, captures the density of the whole network, the clustering coefficient captures the degree to which the overall network contains localized pockets of dense connectivity. Inclusiveness refers to the number of nodes which are included within the various connected parts of the social network. Centralization reflects the extent to which connections are concentrated in a small number of nodes rather than distributed equally among all nodes. Krackhardt's efficiency characterizes how dense the social network is beyond that barely needed to keep the social group even indirectly connected to one another. We use these social network measures as input variables of the ANN model. As an output variable, we use the recommendation accuracy measured by F1-measure. In order to evaluate the effectiveness of the ANN model, sales transaction data from H department store, one of the well-known department stores in Korea, was used. Total 396 experimental samples were gathered, and we used 40%, 40%, and 20% of them, for training, test, and validation, respectively. The 5-fold cross validation was also conducted to enhance the reliability of our experiments. The input variable measuring process consists of following three steps; analysis of customer similarities, construction of a social network, and analysis of social network patterns. We used Net Miner 3 and UCINET 6.0 for SNA, and Clementine 11.1 for ANN modeling. The experiments reported that the ANN model has 92.61% estimated accuracy and 0.0049 RMSE. Thus, we can know that our prediction model helps decide whether CF is useful for a given application with certain data characteristics.

Ontology-Based Process-Oriented Knowledge Map Enabling Referential Navigation between Knowledge (지식 간 상호참조적 네비게이션이 가능한 온톨로지 기반 프로세스 중심 지식지도)

  • Yoo, Kee-Dong
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.61-83
    • /
    • 2012
  • A knowledge map describes the network of related knowledge into the form of a diagram, and therefore underpins the structure of knowledge categorizing and archiving by defining the relationship of the referential navigation between knowledge. The referential navigation between knowledge means the relationship of cross-referencing exhibited when a piece of knowledge is utilized by a user. To understand the contents of the knowledge, a user usually requires additionally information or knowledge related with each other in the relation of cause and effect. This relation can be expanded as the effective connection between knowledge increases, and finally forms the network of knowledge. A network display of knowledge using nodes and links to arrange and to represent the relationship between concepts can provide a more complex knowledge structure than a hierarchical display. Moreover, it can facilitate a user to infer through the links shown on the network. For this reason, building a knowledge map based on the ontology technology has been emphasized to formally as well as objectively describe the knowledge and its relationships. As the necessity to build a knowledge map based on the structure of the ontology has been emphasized, not a few researches have been proposed to fulfill the needs. However, most of those researches to apply the ontology to build the knowledge map just focused on formally expressing knowledge and its relationships with other knowledge to promote the possibility of knowledge reuse. Although many types of knowledge maps based on the structure of the ontology were proposed, no researches have tried to design and implement the referential navigation-enabled knowledge map. This paper addresses a methodology to build the ontology-based knowledge map enabling the referential navigation between knowledge. The ontology-based knowledge map resulted from the proposed methodology can not only express the referential navigation between knowledge but also infer additional relationships among knowledge based on the referential relationships. The most highlighted benefits that can be delivered by applying the ontology technology to the knowledge map include; formal expression about knowledge and its relationships with others, automatic identification of the knowledge network based on the function of self-inference on the referential relationships, and automatic expansion of the knowledge-base designed to categorize and store knowledge according to the network between knowledge. To enable the referential navigation between knowledge included in the knowledge map, and therefore to form the knowledge map in the format of a network, the ontology must describe knowledge according to the relation with the process and task. A process is composed of component tasks, while a task is activated after any required knowledge is inputted. Since the relation of cause and effect between knowledge can be inherently determined by the sequence of tasks, the referential relationship between knowledge can be circuitously implemented if the knowledge is modeled to be one of input or output of each task. To describe the knowledge with respect to related process and task, the Protege-OWL, an editor that enables users to build ontologies for the Semantic Web, is used. An OWL ontology-based knowledge map includes descriptions of classes (process, task, and knowledge), properties (relationships between process and task, task and knowledge), and their instances. Given such an ontology, the OWL formal semantics specifies how to derive its logical consequences, i.e. facts not literally present in the ontology, but entailed by the semantics. Therefore a knowledge network can be automatically formulated based on the defined relationships, and the referential navigation between knowledge is enabled. To verify the validity of the proposed concepts, two real business process-oriented knowledge maps are exemplified: the knowledge map of the process of 'Business Trip Application' and 'Purchase Management'. By applying the 'DL-Query' provided by the Protege-OWL as a plug-in module, the performance of the implemented ontology-based knowledge map has been examined. Two kinds of queries to check whether the knowledge is networked with respect to the referential relations as well as the ontology-based knowledge network can infer further facts that are not literally described were tested. The test results show that not only the referential navigation between knowledge has been correctly realized, but also the additional inference has been accurately performed.