• 제목/요약/키워드: Web recommendation service

검색결과 101건 처리시간 0.021초

서비스 매쉬업 개발자를 위한 유사도 기반 서비스 추천 방법 (Similarity-based Service Recommendation for Service-Mashup Developers)

  • 김현승;고인영
    • 정보과학회 논문지
    • /
    • 제44권9호
    • /
    • pp.908-917
    • /
    • 2017
  • 웹 서비스 기술이 각광받고 그 사용이 확대됨에 따라, 복잡하고 동적인 서비스 환경에서 사용자에게 적절한 서비스를 추천하는 방법에 대한 연구가 활발히 진행되고 있다. 또한 효과적인 서비스 매쉬업 개발을 위해 서비스를 추천하는 방법이 제안되었으나, 기존의 매쉬업 단위 서비스 추천 방식은 여러 매쉬업 개발자의 성향을 분석하여 그에 맞는 서비스를 추천하지는 못하였다. 이에 본 논문에서는 매쉬업 개발자들이 만든 서비스 매쉬업의 집합들과 추천 대상 개발자의 매쉬업 집합 사이의 유사도를 측정하고 유사한 매쉬업 집합들로부터 서비스를 추천하는 방법을 제안한다. 그리고 ProgrammableWeb에서 수집된 매쉬업 데이터로 실험한 결과를 비교 분석하여 본 연구의 방법이 사용자 기반 협업 필터링 알고리즘보다 높은 정확도와 재현율을 보임을 확인하였다.

Improving Web Service Recommendation using Clustering with K-NN and SVD Algorithms

  • Weerasinghe, Amith M.;Rupasingha, Rupasingha A.H.M.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권5호
    • /
    • pp.1708-1727
    • /
    • 2021
  • In the advent of the twenty-first century, human beings began to closely interact with technology. Today, technology is developing, and as a result, the world wide web (www) has a very important place on the Internet and the significant task is fulfilled by Web services. A lot of Web services are available on the Internet and, therefore, it is difficult to find matching Web services among the available Web services. The recommendation systems can help in fixing this problem. In this paper, our observation was based on the recommended method such as the collaborative filtering (CF) technique which faces some failure from the data sparsity and the cold-start problems. To overcome these problems, we first applied an ontology-based clustering and then the k-nearest neighbor (KNN) algorithm for each separate cluster group that effectively increased the data density using the past user interests. Then, user ratings were predicted based on the model-based approach, such as singular value decomposition (SVD) and the predictions used for the recommendation. The evaluation results showed that our proposed approach has a less prediction error rate with high accuracy after analyzing the existing recommendation methods.

태그의 문맥 정보를 이용한 웹 자원 추천 시스템 (Tag Based Web Resource Recommendation System)

  • 송제인;정옥란
    • 인터넷정보학회논문지
    • /
    • 제17권6호
    • /
    • pp.133-141
    • /
    • 2016
  • 최근의 여러 웹서비스에서는 태깅 기능을 제공함으로써 사용자가 작성하는 게시물의 주제를 표현하도록 유도하고 있다. 태그를 이용하면 글이나 사진에 대한 글쓴이의 감정과 같은 문맥적인 정보의 효과적인 추출이 가능하기 때문에, 기계적인 방식보다 글의 내용에 대해서 더 나은 의미 파악이 가능하다. 따라서 이를 추천시스템에 적용한다면 사용자의 만족도를 높일 수 있는 추천이 가능할 것이다. 본 논문에서는 게시글에 속한 태그들 간의 관계를 계산하고, 효율적인 유사도 측정 알고리즘을 통해 게시글과 사용자등의 웹 자원을 추천하는 방법을 제안한다. 마지막으로, 실험을 통해 제안한 방법의 유효성을 검증하고, 사용자의 만족도를 측정하였다.

온라인 음악 콘텐츠 추천 시스템 구현을 위한 협업 필터링 기법들의 비교 평가 (Evaluation of Collaborative Filtering Methods for Developing Online Music Contents Recommendation System)

  • 유영석;김지연;손방용;정종진
    • 전기학회논문지
    • /
    • 제66권7호
    • /
    • pp.1083-1091
    • /
    • 2017
  • As big data technologies have been developed and massive data have exploded from users through various channels, CEO of global IT enterprise mentioned core importance of data in next generation business. Therefore various machine learning technologies have been necessary to apply data driven services but especially recommendation has been core technique in viewpoint of directly providing summarized information or exact choice of items to users in information flooding environment. Recently evolved recommendation techniques have been proposed by many researchers and most of service companies with big data tried to apply refined recommendation method on their online business. For example, Amazon used item to item collaborative filtering method on its sales distribution platform. In this paper, we develop a commercial web service for suggesting music contents and implement three representative collaborative filtering methods on the service. We also produce recommendation lists with three methods based on real world sample data and evaluate the usefulness of them by comparison among the produced result. This study is meaningful in terms of suggesting the right direction and practicality when companies and developers want to develop web services by applying big data based recommendation techniques in practical environment.

시맨틱 웹에서 개인화 프로파일을 이용한 콘텐츠 추천 검색 시스템 (Contents Recommendation Search System using Personalized Profile on Semantic Web)

  • 송창우;김종훈;정경용;류중경;이정현
    • 한국콘텐츠학회논문지
    • /
    • 제8권1호
    • /
    • pp.318-327
    • /
    • 2008
  • 정보기술의 발전과 인터넷 사용의 증가로 이용가능한 정보들의 양이 폭발적으로 증가한다. 콘텐츠 추천 시스템은 사용자가 원하지 않는 정보를 필터링하고 유용한 정보를 추천하는 서비스를 제공한다. 기존의 추천 시스템은 데이터마이닝 기법으로 웹 접속 기록 및 유형과 사용자가 요구하는 정보를 서비스 제공자 측면에서 분석하여 콘텐츠를 제공한다. 사용자의 선호도와 생활패턴 등의 사용자 측면에서의 정보들의 표현이 어려웠기 때문에 제한된 서비스를 제공할 수 밖에 없었다. 시맨틱 웹 기술은 이미지, 문서 등의 모든 객체를 대상으로 목적에 맞는 정보를 수집, 가공, 응용할 수 있도록 데이터 간에 잘 정의된 의미 있는 관계를 만들 수 있다. 본 논문에서는 시맨틱 웹 환경에서 개인화 프로파일을 동적으로 갱신하여 반영할 수 있는 콘텐츠 추천 검색 시스템을 제안한다. 개인화 프로파일은 프로파일의 특징을 담고 있는 컬렉터, 다양한 컬렉터들로부터 프로파일을 수집하는 수집기, 프로파일 특성에 기반한 고유의 프로파일 컬렉터를 해석하는 해석기로 구성된다. 개인화 모듈은 콘텐츠 추천 서버에서 개인화 프로파일과 주기적으로 동기화할 수 있도록 도와준다. 추천 콘텐츠로 음악을 선택하여 서비스 시나리오에 따라 개인화 프로파일이 콘텐츠 추천 서버에 전달되어 사용자의 선호도와 생활패턴이 반영된 추천리스트를 제공하는지 실험한다.

앙상블 Support Vector Machine과 하이브리드 SOM을 이용한 동적 웹 정보 추천 시스템 (Dynamic Recommendation System of Web Information Using Ensemble Support Vector Machine and Hybrid SOM)

  • 윤경배;최준혁
    • 한국지능시스템학회논문지
    • /
    • 제13권4호
    • /
    • pp.433-438
    • /
    • 2003
  • 최근, 인터넷 쇼핑몰과 같은 웹 사이트를 대상으로 각 사용자에게 가장 필요한 정보를 제공하기 위한 웹 정보 추천 시스템에 대한 연구가 활발히 진행되고 있다. 사용자 프로파일과 명시적 피드백에 의존하는 대부분의 웹 정보 추천 시스템의 경우 사용자의 다양하고 정확한 정보를 필요로 하지만 실세계의 문제에 있어 이러한 연관 정보를 얻기란 쉽지 않다. 본 논문에서는 사용자의 명시적 피드백과 프로파일에 의존하지 않는 웹 정보 서비스를 위한 정보 예측 기법을 제안한다. 이를 위해 앙상블 Support Vector Machine과 하이브리드 SOM을 설계하고 적용하여 웹 로그 데이터의 희소성 문제를 해결하면서 대용량 웹 데이터로부터 사용자에게 꼭 필요하고 유용한 정보를 추천할 수 있는 동적 웹 정보 예측 시스템을 설계하고 구현한다.

웹 페이지 방문 시간을 고려한 연관 규칙 탐색

  • 강형창;김익찬;김철수
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.263-269
    • /
    • 2005
  • 웹 사이트를 이용하는 사용자들은 정보를 편리하게 얻고자 한다. 웹 사이트 운영자들은 웹 사이트를 이용하는 사용자들에게 차별화된 서비스를 제공하기 위해 사용자에 따른 패턴 분석을 해야 한다. 연관 규칙은 패턴 발견을 위해 데이터 마이닝 기법중의 하나이다. 사용자에 따른 패턴을 찾아내면, 사용자에 따른 차별화된 서비스를 제공할 수 있다. 사용자에 따른 패턴은 연관 규칙 탐색으로 알 수 있고, 웹 페이지 방문 시간을 고려한 연관 규칙 탐색 결과는 차별화된 웹 구조 서비스 및 추천 서비스가 가능하다.

  • PDF

이용자 이용행위 및 콘텐츠 위치정보에 기반한 개인화 추천방법에 관한 연구 (A Study on Personalized Recommendation Method Based on Contents Using Activity and Location Information)

  • 김용;김문석;김윤범;박재홍
    • 정보관리학회지
    • /
    • 제26권1호
    • /
    • pp.81-105
    • /
    • 2009
  • 본 연구에서는 웹, IPTV 등의 콘텐츠 유통망에서의 개인화 추천서비스를 위하여 이용자의 콘텐츠 이용행위와 콘텐츠의 위치정보를 활용한 추천방법을 제안하고 있다. 추천방법의 성능향상을 위하여 이용자 및 콘텐츠 프로파일 생성방법과 함께, 이용자의 콘텐츠 이용행위를 암묵적 이용자 피드백으로서 학습과정에 적용하여 이용자 선호도를 분석하였다. 학습과정에서의 이용자 선호도 분석을 위하여 협업여과추천방법 및 내용기반추천 방법을 적용하였다. 또한 보다 정확한 추천을 위한 최종 콘텐츠 추천을 위하여 웹사이트 상의 콘텐츠에 대한 위치정보를 활용한 추천방법을 제안하고 있다. 이를 통하여 보다 효율적이고 정확한 추천 서비스의 제공이 가능할 수 있다.

생성형 인공지능을 활용한 신발 추천 모델 개발 (Development of a Shoe Recommendation Model for Matching Outfits Using Generative Artificial Intelligence)

  • Jun Woo CHOI
    • Journal of Korea Artificial Intelligence Association
    • /
    • 제1권1호
    • /
    • pp.7-10
    • /
    • 2023
  • This study proposes an AI-based shoe recommendation model based on user clothing image data to solve the problem of the global fashion industry, which is worsening due to factors such as the economic downturn. Shoes are an important part of modern fashion, and this research aims to improve user satisfaction and contribute to economic growth through a generative AI-based shoe recommendation service. By utilizing generative AI in the personalized consumer market, we show the feasibility, efficiency, and improvements through an accessible web-based implementation. In conclusion, this study provides insights to help fulfill consumer needs in the ever-changing fashion market by implementing a generative AI-based shoe recommendation model.

여행경로 추천 서비스를 위한 최적화 수리모형 (New Mathematical Model for Travel Route Recommendation Service)

  • 황인태;김흥섭
    • 산업경영시스템학회지
    • /
    • 제40권3호
    • /
    • pp.99-106
    • /
    • 2017
  • With the increased interest in the quality of life of modern people, the implementation of the five-day working week, the increase in traffic convenience, and the economic and social development, domestic and international travel is becoming commonplace. Furthermore, in the past, there were many cases of purchasing packaged goods of specialized travel agencies. However, as the development of the Internet improved the accessibility of information about the travel area, the tourist is changing the trend to plan the trip such as the choice of the destination. Web services have been introduced to recommend travel destinations and travel routes according to these needs of the customers. Therefore, after reviewing some of the most popular web services today, such as Stubby planner (http://www.stubbyplanner.com) and Earthtory (http://www.earthtory.com), they were supposed to be based on traditional Traveling Salesman Problems (TSPs), and the travel routes recommended by them included some practical limitations. That is, they were not considered important issues in the actual journey, such as the use of various transportation, travel expenses, the number of days, and lodging. Moreover, although to recommend travel destinations, there have been various studies such as using IoT (Internet of Things) technology and the analysis of cyberspatial Big Data on the web and SNS (Social Networking Service), there is little research to support travel routes considering the practical constraints. Therefore, this study proposes a new mathematical model for applying to travel route recommendation service, and it is verified by numerical experiments on travel to Jeju Island and trip to Europe including Germany, France and Czech Republic. It also expects to be able to provide more useful information to tourists in their travel plans through linkage with the services for recommending tourist attractions built in the Internet environment.