• Title/Summary/Keyword: Web contents mining

Search Result 72, Processing Time 0.033 seconds

A Clustering Algorithm Considering Structural Relationships of Web Contents

  • Kang Hyuncheol;Han Sang-Tae;Sun Young-Su
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.1
    • /
    • pp.191-197
    • /
    • 2005
  • Application of data mining techniques to the world wide web, referred to as web mining, has been the focus of several recent researches. With the explosive growth of information sources available on the world wide web, it has become increasingly necessary to track and analyze their usage patterns. In this study, we introduce a process of pre-processing and cluster analysis on web log data and suggest a distance measure considering the structural relationships between web contents. Also, we illustrate some real examples of cluster analysis for web log data and look into practical application of web usage mining for eCRM.

Fuzzy Web Usage Mining for User Modeling

  • Jang, Jae-Sung;Jun, Sung-Hae;Oh, Kyung-Whan
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.204-209
    • /
    • 2002
  • The interest of data mining in artificial intelligence with fuzzy logic has been increased. Data mining is a process of extracting desirable knowledge and interesting pattern ken large data set. Because of expansion of WWW, web data is more and more huge. Besides mining web contents and web structures, another important task for web mining is web usage mining which mines web log data to discover user access pattern. The goal of web usage mining in this paper is to find interesting user pattern in the web with user feedback. It is very important to find user's characteristic fer e-business environment. In Customer Relationship Management, recommending product and sending e-mail to user by extracted users characteristics are needed. Using our method, we extract user profile from the result of web usage mining. In this research, we concentrate on finding association rules and verify validity of them. The proposed procedure can integrate fuzzy set concept and association rule. Fuzzy association rule uses given server log file and performs several preprocessing tasks. Extracted transaction files are used to find rules by fuzzy web usage mining. To verify the validity of user's feedback, the web log data from our laboratory web server.

Interplay of Text Mining and Data Mining for Classifying Web Contents (웹 컨텐츠의 분류를 위한 텍스트마이닝과 데이터마이닝의 통합 방법 연구)

  • 최윤정;박승수
    • Korean Journal of Cognitive Science
    • /
    • v.13 no.3
    • /
    • pp.33-46
    • /
    • 2002
  • Recently, unstructured random data such as website logs, texts and tables etc, have been flooding in the internet. Among these unstructured data there are potentially very useful data such as bulletin boards and e-mails that are used for customer services and the output from search engines. Various text mining tools have been introduced to deal with those data. But most of them lack accuracy compared to traditional data mining tools that deal with structured data. Hence, it has been sought to find a way to apply data mining techniques to these text data. In this paper, we propose a text mining system which can incooperate existing data mining methods. We use text mining as a preprocessing tool to generate formatted data to be used as input to the data mining system. The output of the data mining system is used as feedback data to the text mining to guide further categorization. This feedback cycle can enhance the performance of the text mining in terms of accuracy. We apply this method to categorize web sites containing adult contents as well as illegal contents. The result shows improvements in categorization performance for previously ambiguous data.

  • PDF

A Web-based System for Business Process Discovery: Leveraging the SICN-Oriented Process Mining Algorithm with Django, Cytoscape, and Graphviz

  • Thanh-Hai Nguyen;Kyoung-Sook Kim;Dinh-Lam Pham;Kwanghoon Pio Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.8
    • /
    • pp.2316-2332
    • /
    • 2024
  • In this paper, we introduce a web-based system that leverages the capabilities of the ρ(rho)-algorithm, which is a Structure Information Control Net (SICN)-oriented process mining algorithm, with open-source platforms, including Django, Graphviz, and Cytoscape, to facilitate the rediscovery and visualization of business process models. Our approach involves discovering SICN-oriented process models from process instances from the IEEE XESformatted process enactment event logs dataset. This discovering process is facilitated by the ρ-algorithm, and visualization output is transformed into either a JSON or DOT formatted file, catering to the compatibility requirements of Cytoscape or Graphviz, respectively. The proposed system utilizes the robust Django platform, which enables the creation of a userfriendly web interface. This interface offers a clear, concise, modern, and interactive visualization of the rediscovered business processes, fostering an intuitive exploration experience. The experiment conducted on our proposed web-based process discovery system demonstrates its ability and efficiency showing that the system is a valuable tool for discovering business process models from process event logs. Its development not only contributes to the advancement of process mining but also serves as an educational resource. Readers, students, and practitioners interested in process mining can leverage this system as a completely free process miner to gain hands-on experience in rediscovering and visualizing process models from event logs.

Probabilistic based Web Contents Mining (확률 기반 웹 콘텐츠 마이닝)

  • Yun, Bo-Hyun;Cho, Kwang-Moon
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.11a
    • /
    • pp.16-20
    • /
    • 2006
  • In Web contents mining, it is important to recognize the unlabeled entities and to integrate the sub-linked information and the extracted results. This paper presents the probabilistic based method which can recognize the unlabeled entity by using the Baysien model. Moreover, we propose the method that can use the information of the sub-linked web pages and integrate the extracted results. In the experimental results, we can see that the probabilistic based entity and information integration show the most significant precision.

  • PDF

A Big Data Study on Viewers' Response and Success Factors in the D2C Era Focused on tvN's Web-real Variety 'SinSeoYuGi' and Naver TV Cast Programming

  • Oh, Sejong;Ahn, Sunghun;Byun, Jungmin
    • International Journal of Advanced Culture Technology
    • /
    • v.4 no.2
    • /
    • pp.7-18
    • /
    • 2016
  • The first D2C-era web-real variety show in Korea was broadcast via tvN of CJ E&M. The web-real variety program 'SinSeoYuGi' accumulated 54 million views, along with 50 million views at the Chinese portal site QQ. This study carries out an analysis using text mining that extracts portal site blogs, twitter page views and associative terms. In addition, this study derives viewers' response by extracting key words with opinion mining techniques that divide positive words, neutral words and negative words through customer sentiment analysis. It is found that the success factors of the web-real variety were reduced in appearance fees and production cost, harmony between actual cast members and scenario characters, mobile TV programing, and pre-roll advertising. It is expected that web-real variety broadcasting will increase in value as web contents in the future, and be established as a new genre with the job of 'technical marketer' growing as well.

An Extended Dynamic Web Page Recommendation Algorithm Based on Mining Frequent Traversal Patterns (빈발 순회패턴 탐사에 기반한 확장된 동적 웹페이지 추천 알고리즘)

  • Lee KeunSoo;Lee Chang Hoon;Yoon Sun-Hee;Lee Sang Moon;Seo Jeong Min
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.9
    • /
    • pp.1163-1176
    • /
    • 2005
  • The Web is the largest distributed information space but, the individual's capacity to read and digest contents is essentially fixed. In these Web environments, mining traversal patterns is an important problem in Web mining with a host of application domains including system design and information services. Conventional traversal pattern mining systems use the inter-pages association in sessions with only a very restricted mechanism (based on vector or matrix) for generating frequent K-Pagesets. We extend a family of novel algorithms (termed WebPR - Web Page Recommend) for mining frequent traversal patterns and then pageset to recommend. We add a WebPR(A) algorithm into a family of WebPR algorithms, and propose a new winWebPR(T) algorithm introducing a window concept on WebPR(T). Including two extended algorithms, our experimentation with two real data sets, including LadyAsiana and KBS media server site, clearly validates that our method outperforms conventional methods.

  • PDF

Web Contents Mining System for Opinion Information Searching Engine (의견정보 검색엔진을 위한 웹 콘텐츠 마이닝 시스템)

  • Joo, Hae-Jong;Park, Young-Bae;Choi, Hae-Gil
    • The Journal of Information Technology
    • /
    • v.12 no.3
    • /
    • pp.7-17
    • /
    • 2009
  • This research is about the design of an opinion drawing and analysis system through statistical based Web Mining of web contents, where data of opinions are automatically drawn and analyzed concerning web documents that are scattered around in various web sites that exist within the internet. Furthermore, provides a search service that can easily classify positive/negative opinions and also provide searching and statistical information. Users, who want to search for opinions, can input a specific keyword to observe opinions of others easily. In addition, there is a merit in materializing the monitoring system.

  • PDF

A Process of Digital Design using Web-based CRM(eCRM) (웹기반 CRM(eCRM)을 이용한 디지털디자인 프로세스)

  • 이유리;양종열;정성환;오민권;이옥희
    • Archives of design research
    • /
    • v.14 no.4
    • /
    • pp.109-116
    • /
    • 2001
  • In recent years, the advent of information technology has transformed the way design is done and how companies manage information about their customers. The availability of large volume of data on customers, made possible by new information technology tools, has created opportunities as well as challenges for businesses to apply the data and gain competitive advantage. Under these conditions, eCRM solution through web data mining tools can provide the hidden information(need or preference) and we can understand customer better, while a systematic information management effort can channel the information into effective digital design contents strategies. Therefore, in this study, after reviewing web data mining and eCRM definition and developing a research program, guidelines for digital design contents are provided through the eCRM solution program we developed.

  • PDF

WebPR : A Dynamic Web Page Recommendation Algorithm Based on Mining Frequent Traversal Patterns (WebPR :빈발 순회패턴 탐사에 기반한 동적 웹페이지 추천 알고리즘)

  • Yoon, Sun-Hee;Kim, Sam-Keun;Lee, Chang-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.11B no.2
    • /
    • pp.187-198
    • /
    • 2004
  • The World-Wide Web is the largest distributed Information space and has grown to encompass diverse information resources. However, although Web is growing exponentially, the individual's capacity to read and digest contents is essentially fixed. From the view point of Web users, they can be confused by explosion of Web information, by constantly changing Web environments, and by lack of understanding needs of Web users. In these Web environments, mining traversal patterns is an important problem in Web mining with a host of application domains including system design and Information services. Conventional traversal pattern mining systems use the inter-pages association in sessions with only a very restricted mechanism (based on vector or matrix) for generating frequent k-Pagesets. We develop a family of novel algorithms (termed WebPR - Web Page Recommend) for mining frequent traversal patterns and then pageset to recommend. Our algorithms provide Web users with new page views, which Include pagesets to recommend, so that users can effectively traverse its Web site. The main distinguishing factors are both a point consistently spanning schemes applying inter-pages association for mining frequent traversal patterns and a point proposing the most efficient tree model. Our experimentation with two real data sets, including Lady Asiana and KBS media server site, clearly validates that our method outperforms conventional methods.