• Title/Summary/Keyword: Web buckling

Search Result 219, Processing Time 0.03 seconds

Effects of flange and web slenderness ratios on elastic flange local buckling of doubly symmetric I-girders (이축 대칭 I형 거더의 플랜지 탄성좌굴에 대한 플랜지와 복부판 세장비의 영향)

  • Lee, Jeong-Hwa;Lee, Kee-Sei;Byun, Nam-Joo;Kang, Young-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.456-464
    • /
    • 2016
  • Increasing the strength of structural materials allows their self-weight to be reduced and this, in turn, enables the structures to satisfy esthetic requirements. The yield strength of high-performance steel is almost 480 MPa, which is approximately 50% higher than that of general structural steel. The use of high strength materials, however, makes the sections more slender, which can potentially result in significant local stability problems. The strength of slender element sections might be governed by their elastic buckling behavior, and the elastic buckling strength is very sensitive to the boundary conditions. Because the web provides the boundary conditions of the compressive thin-flange, the stiffness of the web can affect the elastic buckling strength of the flange. In this study, therefore, the effects of the flange and web slenderness ratios on the elastic flange local buckling of I-girders subjected to a pure bending moment were evaluated by finite element analysis (FEA). The analysis results show that the elastic local buckling strength and buckling modes were affected not only by the web support conditions, but also by the flange and web slenderness ratios.

Reinforcement Location of Plate Girders with Longitudinal Stiffeners (플레이트 거더의 수평보강재 보강 위치)

  • Son, Byung-Jik;Huh, Yong-Hak
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.4
    • /
    • pp.82-89
    • /
    • 2009
  • Unlike concrete bridge, steel bridge resists external force by forming thin plate. Thus, because steel girder bridge has big slenderness ratio, buckling is a major design factor. Plate girder consists of flange and web plate. Because of economic views, web plate that resists shear forces is made by more thinner plate. Thus, web plate has much risk for buckling. The objective of this study is to analyze the buckling behaviors of plate girder and to present the proper reinforcement location of longitudinal stiffeners. Various parametric study according to the change of web height, transverse stiffeners and load condition are examined.

Elastic Buckling Characteristics of Plate Girder Web Panel (경량전철 2주형 판형교 복부판의 탄성좌굴 특성)

  • 황민오;성택룡;윤태양;이안호
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.344-351
    • /
    • 2000
  • In the design of plate girder web panels, it is required to evaluate accurately the elastic buckling strength under pure shear, pure bending and combined bending and shear. Currently, elastic buckling coefficients of web panels stiffened by transverse intermediate stiffeners are determined by assuming conservatively that web panels are simply supported at the juncture between the flange and web. However, depending upon the geometry and the properties of the plate girder bridge, upper juncture between the flange and web can be assumed as fixed because concrete deck prevents the rotational displacement of upper flange. In the present study, a series of numerical analyses based on finite element modeling is carried out to investigate the effects of the concrete deck, and the resulting data are quantified in simple equations.

  • PDF

Shear Strength of Plate Girder (플레이트거더의 전단내력)

  • Choi, Chui-Kyung;Kim, Kyu-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.2
    • /
    • pp.169-176
    • /
    • 2003
  • In the design of plate girder web panels, it is required to evaluate accurately the elastic buckling strength under shear, whether or not the post-buckling strength is accounted for. Currently, elastic shear buckling coefficient of web panels stiffened by transverse intermediate stiffeners are determined by assuming conservatively that web panels are simply supported at the juncture between the flange and web. Although the notion of the real boundary condition at the juncture of the web and the flanges to be somewhere between simple and fixed has been recognized from early days, the boundary condition has been conservatively assumed, mainly due to lack of means to evaluate it in a rational manner. In this paper, a series of numerical analyses and experiments is carried out to provide a simple equation with some parameters especially the flange-web thickness ratio.

Flexural Strength of HSB Steel Girders Due to Inelastic Lateral-Torsional Buckling - Sections with Slender Web (HSB 강거더의 비탄성 횡비틂좌굴에 의한 휨강도 - 세장 복부판 단면)

  • Cho, Eun-Young;Shin, Dong-Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.2
    • /
    • pp.217-231
    • /
    • 2012
  • The flexural behavior of HSB I-girder with a non-slender web attributed to inelastic lateral-torsional buckling under uniform bending was investigated using nonlinear finite element analysis of ABAQUS. The girder was assumed to have a compact or noncompact web in order to prevent premature bend-buckling of the web. The unbraced length of the girder was selected so that inelastic lateral-torsional buckling governs the ultimate flexural strength. The compression flange was also assumed to be either compact or noncompact to prevent local buckling of the elastic flange. Both homogeneous sections fabricated from HSB600 or HSB800 steel and hybrid sections with HSB800 flanges and SM570-TMC web were considered. In the FE analysis, the flanges and web of I-girder were modeled as thin shell elements. Initial imperfections and residual stresses were imposed on the FE model. An elasto-plastic strain hardening material was assumed for steel. After establishing the validity of the present FE analysis by comparing FE results with test results in existing literature, the effects of initial imperfection and residual stress on the inelastic lateral-torsional buckling behavior were analyzed. Finite element analysis results for 96 sections demonstrated that the current inelastic strength equations for the compression flange in AASHTO LTFD can be applied to predict the inelastic lateral torsional buckling strength of homogeneous and hybrid HSB I-girders with a non-slender web.

Inelastic distortional buckling of hot-rolled I-section beam-columns

  • Lee, Dong-Sik
    • Steel and Composite Structures
    • /
    • v.4 no.1
    • /
    • pp.23-36
    • /
    • 2004
  • The inelastic lateral-distortional buckling of doubly-symmetric hot-rolled I-section beam-columns subjected to a concentric axial force and uniform bending with elastic restraint which produce single curvature is investigated in this paper. The numerical model adopted in this paper is an energy-based method which leads to the incremental and iterative solution of a fourth-order eigenproblem, with very rapid solutions being obtained. The elastic restraint considered in this paper is full restraint against translation, but torsional restraint is permitted at the tension flange. Hitherto, a numerical method to analyse the elastic and inelastic lateral-distortional buckling of restrained or unrestrained beam-columns is unavailable. The prediction of the inelastic lateral-distortional buckling load obtained in this study is compared with the inelastic lateral-distortional buckling of restrained beams and the inelastic lateral-torsional buckling solution, by suppressing the out-of-plane web distortion, is published elsewhere and they agree reasonable well. The method is then extended to the lateral-distortional buckling of continuously restrained doubly symmetric I-sections to illustrate the effect of web distortion.

Local Buckling Characteristics of a column with I section (I형강기둥의 국부좌굴 특성)

  • 임종완;임장근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.4
    • /
    • pp.18-26
    • /
    • 1994
  • The buckling characteristics of I - shaped columns which are composed of thin web and equal upper/lower flange plates are generally classified into the local and global modes. In this paper, its local buckling problem has been formulated on the basis of the assumed buckling modes using the finite element method for beams and plates. The effects of local bucklings are studied for various size rations and end conditions of I-shaped columns. The calculated results are comparatively well consistent with values obtained from the existing studies. The global buckling characteristics calculated by the present method are in good agreement with the classical rigid web solution

  • PDF

Shear-bending interaction strength of locally buckled I-sections

  • El Aghoury, M.;Hanna, M.T.
    • Steel and Composite Structures
    • /
    • v.8 no.2
    • /
    • pp.145-158
    • /
    • 2008
  • In slender sections there is a substantial post-buckling strength provided after the formation of local buckling waves. These waves happened due to normal stresses or shear stresses or both. In this study, a numerical investigation of the behavior of slender I-section beams in combined pure bending and shear has been described. The studied cases were assumed to be prevented from lateral torsional buckling. To achieve this aim, a finite element model that simulates the geometric and material nonlinear nature of the problem has been developed. Moreover, the initial geometric imperfections were included in the model. Different flange and web width-thickness ratios as well as web panel aspect ratios have been considered to draw complete set of interaction diagrams. Results reflect the interaction behavior between flange and web in resisting the combined action of moments and shear. In addition, the web panel aspect ratio will not significantly affect the combined ultimate shear-bending strength as well as the post local buckling strength gained by the section. Results are compared with that predicted by both the Eurocode 3 and the American Iron and Steel specifications, AISI-2001. Finally, an empirical interaction equation has been proposed.

A Study on the Geometric Parameters that Influence the Shear Buckling of Trapezoidally Corrugated Webs (제형파형강판의 전단거동에 영향을 미치는 기하학적 요소에 대한 연구)

  • Gill, Heung Bae;Lee, Seung Rok;Lee, Hak Eun;Lee, Pil Goo
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.591-601
    • /
    • 2003
  • Because of their high out-of-plane and in-planes strength, trapezoidally corrugated plates have been increasingly used in buildings and bridges. If corrugated plates are used as the web of plate girders or prestressed concrete box girders, the flanges take most of the bending stress. On the other hand, the corrugated plate web supports shear stress due to the accordion effect. The corrugated plate web could fail by three different buckling modes: global, local, or interactive shear buckling. To determine the effects of geometric parameters on the buckling capacity of the corrugated plates, a parametric study was performed using finite dement method. The analysis results showed that the buckling capacity and modes depend on individual parameters as well as combinations of parameters.

Lateral-torsional buckling resistance of composite steel beams with corrugated webs

  • Shaheen, Yousry B.I.;Mahmoud, Ashraf M.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.751-767
    • /
    • 2022
  • In the hogging bending moment area, continuous composite beams are subjected to the ultimate limit state of lateral-torsional buckling (LTB), which depends on web stiffness as well as concrete slab and shear connection stiffnesses. The design of the LTB and the determination of the elastic critical moment are produced approximately, using the European Standard EN 1994-1-1:2004, for continuous composite steel beams, but is applicable only for those with a plane web steel profile. Also, and from the previous researches, the elastic critical moment of the continuous composite beams with corrugated sinusoidal web steel profiles was determined. In this paper, a finite element analysis (FEA) model was developed using the ANSYS 16 software, to determine the elastic critical moments of continuous composite steel beams with various corrugated web profiles, such as trapezoidal, zigzag, and rectangular profiles, which were evaluated against numerical data of the sinusoidal one from the literature. Ultimately, the failure load of a composite steel beam with various web profiles was predicted by studying 46 models, based on FEA modeling, and a procedure for predicting the elastic critical moment of composite beams with various web steel profiles was proposed. When compared to sinusoidal web profiles, the trapezoidal, zigzag, and rectangular web profiles required an average increase in load capacity and stiffness of 7%, 17.5%, and 28%, respectively, according to the finite element analysis. Also, the rectangular web steel profile has a greater stiffness and load capacity. In contrast, the sinusoidal web has lower values for these characteristics.