International Journal of Internet, Broadcasting and Communication
/
제13권3호
/
pp.155-162
/
2021
With the global COVID-19 pandemic, the tourism sector and all consumption have contracted with the untact era. Wine will also be sold and developed in various ways non-face-to-face in the future. Therefore, it is necessary to develop apps and web servers that focus on health in the era of single-person households and non-face-to-face. This study used facial recognition data based on photos of adult men and women in their 40s and 50s to analyze the Sasang constitution through a mobile app and web server, and suggested wine recommendations suitable for their constitution. First, the user's body information is entered. And through the facial recognition mobile app, recommend the right wine after analyzing the body type. if it's not like the first recommended wine, it is configured to receive another wine recommendation. In the future, the number of single-person households will increase further, and in the age of well-being, wine recommendations that fit my body will be useful. Wine recommendation suitable for Sasang constitution will be a useful mobile application to manage personal healt
본 논문은 캐릭터 웹드라마에 적합한 간접광고 제품을 추천하는 인공지능(AI) 시스템 알고리즘 개발에 관한 연구이다. 본 연구는 웹드라마의 대사 작성에 있어 그에 어울리는 간접광고 제품을 추천함으로써 시청자의 콘텐츠 몰입도를 높이고, 드라마의 스토리를 보다 깊게 이해하는 데 도움을 주는 것을 목표로 한다. 본 연구에서는 자연어처리 모델 인 GPT를 활용하여 대사, 줄거리를 분석하고, 분석 결과를 바탕으로 소품형, 배경형 등 두 가지 유형의 간접광고 제품 추천 시스템을 개발한다. 이를 통해 웹드라마의 스토리에 부합하는 제품을 적절히 배치함으로써 간접광고가 자연스럽게 노출될 수 있도록 하고, 그로 인해 시청자들의 몰입도가 증가하며, 상품 홍보의 효과 또한 높인다. 숨겨진 뜻이나 문화적 뉘앙스를 완벽하게 이해하기 어려운 인공지능 모델의 한계와 학습에 필요한 충분한 데이터 확보가 어렵다는 한계가 있다. 그러나 본 연구는 AI가 창작물 제작에 어떻게 기여할 수 있는지에 대한 새로운 인사이트를 제공하고, 창의적 산업 분야에서 자연어 처리 모델의 활용 가능성을 넓히는 중요한 발판이 될 것이다.
온라인에서 보험 정보를 찾는 이용자들이 많은 반면, 보험사 웹 사이트 콘텐츠 추천 연구 사례는 많지 않았으므로 본 연구에서는 보험사 웹 사이트의 페이지 방문 이력을 활용하여 사용자에게 선호 가능성이 높은 페이지 추천 시스템을 제안하였다. 데이터는 웹 브라우저 이용 시 발생하는 클라이언트 사이트 스토리지(Client-side storage)를 활용하여 수집하였으며, 추천 기술로는 협업 필터링(Collaborative filtering)을 연구에 적용하였다. 실험을 실시한 결과 방문여부를 의미하는 이진화된 데이터를 사용한 자카드 인덱스(Jaccard index) 기반의 아이템 기반 협업 필터링(Item-based collaborative, IBCF)에서 좋은 성능을 나타내었다. 향후에는 아이템에 가중치를 부여한 추천 기술을 연구하여, 기업에서 사용 시 마케팅 전략에 부합하는 콘텐츠 추천 시스템을 구현할 수 있을 것이다.
With the rapid increase of information on the World Wide Web, finding useful information on the internet has become a major problem. The recommendation system helps users make decisions in complex data areas where the amount of data available is large. There are many methods that have been proposed in the recommender system. Collaborative filtering is a popular method widely used in the recommendation system. However, collaborative filtering methods still have some problems, namely cold-start problem. In this paper, we propose a movie recommendation system by using social network analysis and collaborative filtering to solve this problem associated with collaborative filtering methods. We applied personal propensity of users such as age, gender, and occupation to make relationship matrix between users, and the relationship matrix is applied to cluster user by using community detection based on edge betweenness centrality. Then the recommended system will suggest movies which were previously interested by users in the group to new users. We show shown that the proposed method is a very efficient method using mean absolute error.
A Web-based fabric information system has been developed. Recently the numbers of textile companies that have their own homepage to advertise their product fabrics for apparel through the Web-based E-commerce rapidly increase.(omitted)
본 논문에서는 개인의 취향에 맞는 음악을 자동으로 추천해주는 음악 추천 시스템을 소개한다. 본 논문에서 소개하는 추천 시스템은 각 음악 사이의 유사도를 그래프로 저장하는 그래프 기반 협동적 여과 방식을 사용하여 사용자의 암시적 선호 정보를 바탕으로 빠른 추천을 할 수 있으며, 또한 사용자의 정적인 성향뿐 아니라 시간에 따라 달라지는 동적인 성향에 맞는 추천도 가능하도록 설계되었다. 추천 서버는 자바로 구현되었으며 독립된 서버로서 클라이언트와 정해진 프로토콜에 따라 통신하도록 구현되었다. 구현된 추천 서버와 실제 사용자들의 음악 다운로드 데이터를 이용하여 추천 데모 사이트를 구축하였으며, 실험을 통하여 추천 결과의 정확도를 측정하였다.
협력적 필터링을 개선하기 위하여 많은 기술들이 개발되고 실용화되었으나 아이템의 연관 관계를 정확하게 반영하지는 못한다. 본 논문에서는 협력적 필터링의 문제점을 보완하기 위하여 단어 빈도와 ${\alpha}$-cut에 의한 연관 웹문서 분류를 이용한 추천 시스템을 제안한다. 제안된 방법은 형태소 분석을 통한 웹문서에서 단어를 추출하고 빈도 가중치를 계산한다. 추출된 단어를 Apriori 알고리즘을 이용해서 연관 규칙을 생성하고 신뢰도에 단어 빈도 가중치를 적용한다. 그리고 연관 규칙 하이퍼그래프 분할을 이용하여 연관 단어간의 유사도를 계산한다. 마지막으로 유사 클래스를 기반으로 연관 웹문서를 ${\alpha}$-cut을 이용하여 분류하고 개선된 코사인 유사도를 이용하여 유사도를 계산한다. 실험 결과 제안한 방법이 기존의 방법들보다 우수함을 확인하였다.
웹 서비스 기술이 각광받고 그 사용이 확대됨에 따라, 복잡하고 동적인 서비스 환경에서 사용자에게 적절한 서비스를 추천하는 방법에 대한 연구가 활발히 진행되고 있다. 또한 효과적인 서비스 매쉬업 개발을 위해 서비스를 추천하는 방법이 제안되었으나, 기존의 매쉬업 단위 서비스 추천 방식은 여러 매쉬업 개발자의 성향을 분석하여 그에 맞는 서비스를 추천하지는 못하였다. 이에 본 논문에서는 매쉬업 개발자들이 만든 서비스 매쉬업의 집합들과 추천 대상 개발자의 매쉬업 집합 사이의 유사도를 측정하고 유사한 매쉬업 집합들로부터 서비스를 추천하는 방법을 제안한다. 그리고 ProgrammableWeb에서 수집된 매쉬업 데이터로 실험한 결과를 비교 분석하여 본 연구의 방법이 사용자 기반 협업 필터링 알고리즘보다 높은 정확도와 재현율을 보임을 확인하였다.
디지털콘텐트는 복제가 용이하고 원본과 복사본이 동일하다는 특성 때문에 불법적인 복제와 유통의 방지를 통한 저작권의 보호에 어려움이 있다. 근래에는 웹을 기반으로 한 각종 디지털콘텐트 서비스 시스템이 상용화되고 있으며, 이것이 안정된 수익 모델로서 발전하기 위하여 적절한 저작권 보호 기술이 요구된다. 일반적으로 웹 기반의 저작권 보호를 위해서는 디지털 콘텐트의 암호화를 통한 안전한 전송 방법을 사용한다. 이때 암호화된 디지털 콘텐트의 크기는 증가하여 실행과정에 필요한 시간을 증가시킨다. 따라서 실행시간과 안전성을 고려한 시스템의 설계가 필요하다. 본 연구에서는, 디지털콘텐트의 저작권 관리 기술을 기반으로 부분 암호화를 통해 수행시간과 안전성을 고려한 디지털콘텐트 전송 시스템을 설계하였다. 또한 분석을 통해 제안시스템의 성능을 평가하였다.
최근 스마트폰 또는 타블렛 PC와 같은 스마트기기가 정보의 창구 역할을 하게 되면서 다수의 사용자가 웹포털을 통해 웹 뉴스를 소비하는 것이 더욱 중요해졌다. 하지만 인터넷 상에 생성되는 뉴스의 양을 사용자들이 따라가기 힘들며 중복되고 반복되는 폭발하는 뉴스 기사에 오히려 혼란을 야기 시킬 수도 있다. 본 논문에서는 뉴스 포털에서 사용자의 질의로부터 검색된 뉴스후보들 중 KoBART 기반의 문서요약 기술을 활용한 뉴스 추천 시스템을 제안한다. 실험을 통해서 새롭게 수집된 뉴스 데이터를 기반으로 학습한 KoBART의 성능이 사전훈련보다 더욱 우수한 결과를 보여주었으며 KoBART로부터 생성된 요약문을 환용하여 사용자에게 효과적으로 뉴스를 추천하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.