• Title/Summary/Keyword: Web Recommendation

Search Result 314, Processing Time 0.026 seconds

A Study of User XQuery Pattern Method based Recommender System

  • Kim, Jin-Hong;Lee, Eun-Seok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.476-479
    • /
    • 2005
  • The information available on the Internet has become widely used, primarily due to the ability of Web based E-Commerce and M-Commerce Retrieval Engines to find useful information for users. However, present day Commerce Retrieval Engines are far from perfect because they return results based on simple user keyword matches without any regard for the concepts in which the user is interested. In this thesis, we design and evaluate a Recommender system for web context aware based information retrieval using user profiles. Also, we designed personalization framework in ubiquitous environment based both e-commerce and m-commerce and presented the interaction of user profile including User XQuery pattern in semantic web.

  • PDF

A Data Mining Technique for Customer Behavior Association Analysis in Cyber Shopping Malls (가상상점에서 고객 행위 연관성 분석을 위한 데이터 마이닝 기법)

  • 김종우;이병헌;이경미;한재룡;강태근;유관종
    • The Journal of Society for e-Business Studies
    • /
    • v.4 no.1
    • /
    • pp.21-36
    • /
    • 1999
  • Using user monitoring techniques on web, marketing decision makers in cyber shopping malls can gather customer behavior data as well as sales transaction data and customer profiles. In this paper, we present a marketing rule extraction technique for customer behavior analysis in cyber shopping malls, The technique is an application of market basket analysis which is a representative data mining technique for extracting association rules. The market basket analysis technique is applied on a customer behavior log table, which provide association rules about web pages in a cyber shopping mall. The extracted association rules can be used for mall layout design, product packaging, web page link design, and product recommendation. A prototype cyber shopping mall with customer monitoring features and a customer behavior analysis algorithm is implemented using Java Web Server, Servlet, JDBC(Java Database Connectivity), and relational database on windows NT.

  • PDF

SCA Advice System: Ontology Framework for a Computer Curricula Advice System Based on Student Behavior

  • Phrimphrai Wongchomphu;Chutima Beokhaimook
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.4
    • /
    • pp.306-315
    • /
    • 2023
  • This study proposed an SCA advice system. It is an ontology-based recommender that provides advice on appropriate computer curricula based on the behavior of high school students. The three computer curricula at Chiang Mai Rajabhat University include computer science (CS), information technology (IT), and web programming and security (WEB). This study aims to design the ontology framework for an SCA advice system. The system considers three core ontologies: student, computer-curriculum, and advice. After analyzing student behaviors, the behavior types of CS, IT, and WEB were determined to be SB-2, SB-1, and SB-5, respectively. All subjects in these three curricula were analyzed and grouped into seven groups. Their curricula were synthesized in terms of basic skills, basic knowledge, and characteristics. Finally, advice results can be obtained by consolidating the curriculum nature of the CS, IT, and WEB curricula.

Brainstorming using TextRank algorithms and Artificial Intelligence (TextRank 알고리즘 및 인공지능을 활용한 브레인스토밍)

  • Sang-Yeong Lee;Chang-Min Yoo;Gi-Beom Hong;Jun-Hyuk Oh;Il-young Moon
    • Journal of Practical Engineering Education
    • /
    • v.15 no.2
    • /
    • pp.509-517
    • /
    • 2023
  • The reactive web service provides a related word recommendation system using the TextRank algorithm and a word-based idea generation service selected by the user. In the related word recommendation system, the method of weighting each word using the TextRank algorithm and the probability output method using SoftMax are discussed. The idea generation service discusses the idea generation method and the artificial intelligence reinforce-learning method using mini-GPT. The reactive web discusses the linkage process between React, Spring Boot, and Flask, and describes the overall operation method. When the user enters the desired topic, it provides the associated word. The user constructs a mind map by selecting a related word or adding a desired word. When a user selects a word to combine from a constructed mind-map, it provides newly generated ideas and related patents. This web service can share generated ideas with other users, and improves artificial intelligence by receiving user feedback as a horoscope.

Web Enabled Expert Systems using Hyperlink-based Inference

  • Yong U. Song;Kim, Wooju;June S. Hong
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2003.05a
    • /
    • pp.319-328
    • /
    • 2003
  • With the proliferation of WWW, providing more intelligence to Web sites has become a major concern in e-business industry. In recent days, this trend is more accelerated by prosperity of CRM (Customer Relationship Management) in terms of various aspects such as product recommendation, self after service, etc. To accomplish this goal, many e-companies are eager to embed web enabled rule-based system, that is, expert systems into their Web sites and several well-known commercial tools are already available in the market. Most of those tools are developed based on CGI so far but CGI based systems inherently suffer over-burden problem when there are too many service demands at the same time due to the nature of CGI. To overcome this limitation of the existing CGI based expert systems, we propose a new form of Web-enabled expert system using hyperlink-based inference mechanism. In terms of burden to Web server, our approach is proven to outperform CGI based approach theoretically and also empirically. For practical purpose, our this approach is implemented in a software system, WeBIS and a graphic rule editing methodology, Expert Diagram is incorporated into the system to facilitates rule generation and maintenance. WeBIS is now successfully operated for financial consulting in the web site of a leading financial consulting company in Korea.

  • PDF

An Analysis Method of User Preference by using Web Usage Data in User Device (사용자 기기에서 이용한 웹 데이터 분석을 통한 사용자 취향 분석 방법)

  • Lee, Seung-Hwa;Choi, Hyoung-Kee;Lee, Eun-Seok
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.3
    • /
    • pp.189-199
    • /
    • 2009
  • The amount of information on the Web is explosively growing as the Internet gains in popularity. However, only a small portion of the information on the Web is truly relevant or useful to the user. Thus, offering suitable information according to user demand is an important subject in information retrieval. In e-commerce, the recommender system is essential to revitalize commercial transactions, raise user satisfaction and loyalty towards the information provider. The existing recommender systems are mostly based on user data collected at servers, so user data are dispersed over several servers. Therefore, web servers that lack sufficient user behavior data cannot easily infer user preferences. Also, if the user visits the server infrequently, it may be hard to reflect the dynamically changing user's interest. This paper proposes a novel personalization system analyzing the user preference based on web documents that are accessed by the user on a user device. The system also identifies non-content blocks appearing repeatedly in the dynamically generated web documents, and adds weight to the keywords extracted from the hyperlink sentence selected by the user. Therefore, the system establishes at an early stage recommendation strategies for the web server that has little user data. Also, user profiles are generated rapidly and more accurately by identifying the information blocks. In order to evaluate the proposed system, this study collected web data and purchase history from users who have current purchase activity. Then, we computed the similarity between purchase data and the user profile. We confirm the accuracy of the generated user profile since the web page containing the purchased item has higher correlation than other item pages.

The Recommendation System based on Staged Clustering for Leveled Programming Education (수준별 프로그래밍 교육을 위한 단계별 클러스터링 기반 추천시스템)

  • Kim, Kyung-Ah;Moon, Nam-Mee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.8
    • /
    • pp.51-58
    • /
    • 2010
  • Programming education needs learning which is adjusted individual learners' level of their learning abilities. Recommendation system is one way of implementing personalized service. In this research, we propose recommendation method which learning items are recommended for individual learners' learning in web-based programming education environment by. Our proposed system for leveled programming education provides appropriate programming problems for a certain learner in his learning level and learning scope employing collaborative filtering method using learners' profile of their level and correlation profile between learning topics. As a result, it resolves a problem that providing appropriate programming problems in learner's level, and we get a result that improving leaner's programming ability. Furthermore, when we compared our proposed method and original collaborative filtering method, our proposed method provides the ways to solve the scalability which is one of the limitations in recommendation systems by improving recommendation performance and reducing analysis time.

Implementation of Personalized Recommendation System using RFM method in Mobile Internet Environment (모바일 환경하에 RFM 기법을 이용한 개인화된 추천 시스템 개발)

  • Cho, Young-Sung;Huh, Moon-Haeng;Ryu, Keun-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.2
    • /
    • pp.41-50
    • /
    • 2008
  • This paper proposes the recommendation system which is a new method using RFM method in mobile internet environment. Using a implict method which is not used user's profile for rating, is not used complicated query processing of the request and the response for rating, it is necessary for user to keep the RFM score about users and items based on the whole purchased data in order to recommend the items. As there are some problems which didn't exactly recommend the items with high purchasablity for new customer and new item that do not have the purchase history data. in existing recommendation systems, this proposing system is possible to solve existing problems, and also this system can avoid the duplicated recommendation by the cross comparison with the purchase history data. It can be improved and evaluated according to the criteria of logicality through the experiment with dataset, collected in a cosmetic cyber shopping mall. Finally, it is able to realize the personalized recommendation system with high purchasablity for one to one web marketing through the mobile internet.

  • PDF

Understanding Collaborative Tags and User Behavioral Patterns for Improving Recommendation Accuracy (추천 시스템 정확도 개선을 위한 협업태그와 사용자 행동패턴의 활용과 이해)

  • Kim, Iljoo
    • Database Research
    • /
    • v.34 no.3
    • /
    • pp.99-123
    • /
    • 2018
  • Due to the ever expanding nature of the Web, separating more valuable information from the noisy data is getting more important. Although recommendation systems are widely used for addressing the information overloading issue, their performance does not seem meaningfully improved in currently suggested approaches. Hence, to investigate the issues, this study discusses different characteristics of popular, existing recommendation approaches, and proposes a new profiling technique that uses collaborative tags and test whether it successfully compensates the limitations of the existing approaches. In addition, the study also empirically evaluates rating/tagging patterns of users in various recommendation approaches, which include the proposed approach, to learn whether those patterns can be used as effective cues for improving the recommendations accuracy. Through the sensitivity analyses, this study also suggests the potential associated with a single recommendation system that applies multiple approaches for different users or items depending upon the types and contexts of recommendations.

Analysis of Mood Tags For Music Recommendation (음악추천을 위한 분위기 태그 분석)

  • Moon, Chang Bae;Lee, Jong Yeol;Kim, Dong-Seong;Kim, Byeong Man
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.1
    • /
    • pp.13-21
    • /
    • 2019
  • The tendency of buyers of web information is changing from the cost-effectiveness which emphasizes the performance over the price to the cost-satisfaction which emphasizes the psychological satisfaction of the buyer. In music recommendation, one of the methods to increase psychological satisfaction is to use the music mood. In this paper, a music recommendation method considering the mood tag and the synonyms tag is proposed and, as an intermediate result of the proposed method, mood tags and music pieces are expressed in Thayer's AV space and then their distribution are analyzed. The analysis result shows the distributions of mood tags and the ones of music pieces are similar, which implies that the proposed recommendation method can provide significant results. In the future, the music recommendation performance will be analyzed.