• Title/Summary/Keyword: Web 기반 학습 시스템

Search Result 681, Processing Time 0.029 seconds

A Molecular Modeling Education System based on Collaborative Virtual Reality (협업 가상현실 기반의 분자모델링 교육 시스템)

  • Kim, Jung-Ho;Lee, Jun;Kim, Hyung-Seok;Kim, Jee-In
    • Journal of the Korea Computer Graphics Society
    • /
    • v.14 no.4
    • /
    • pp.35-39
    • /
    • 2008
  • A computer supported collaborative system provides with a shared virtual workspace over the Internet where its remote users cooperate in order to achieve their goals by overcoming problems caused by distance and time. VRMMS (Virtual Reality Molecular Modeling System) [1] is a VR based collaborative system where biologists can remotely participate in and exercise molecular modeling tasks such as viewing three dimensional structures of molecular models, confirming results of molecular simulations and providing with feedbacks for the next simulations. Biologists can utilize VRMMS in executing molecular simulations. However, first-time users and beginners need to spend some time for studying and practicing in order to skillfully manipulate molecular models and the system. The best way to resolve the problem is to have a face-to-face session of teaching and learning VRMMS. However, it is not practically recommended in the sense that the users are remotely located. It follows that the learning time could last longer than desired. In this paper, we propose to use Second Life [2] combining with VRMMS for removing the problem. It can be used in building a shared workplace over the Internet where molecular simulations using VRMMS can be exercised, taught, learned and practiced. Through the web, users can collaborate with each other using VRMMS. Their avatars and tools of molecular simulations can be remotely utilized in order to provide with senses of 'being there' to the remote users. The users can discuss, teach and learn over the Internet. The shared workspaces for discussion and education are designed and implemented in Second Life. Since the activities in Second Life and VRMMS are designed to realistic, the system is expected to help users in improving their learning and experimental performances.

  • PDF

Design and Implementation of MPEG-21 Testbed (MPEG-21 Testbed의 설계 및 구현)

  • 손정화;권혁민;손현식;조영란;김만배
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.139-143
    • /
    • 2002
  • 1990 년대 후반부터 다양한 디지털 통신망을 이용하여 멀티미디어 컨텐츠 서비스가 가능하게 되었다. 하지만, 멀티미디어 컨텐츠의 전달 및 이용을 위한 기반 구조들의 독자적 발전 및 다양한 통합적 관리 체계 시스템으로 인해, 멀티미디어 컨텐츠 표현 방식의 호환성 문제, 혼재하는 네트워크 전달 방식과 단말 방식의 호환성 문제 등의 잠재적인 문제점이 발생한다. 이런 문제의 대안으로 현재 존재하는 기술 및 기반 구조들 사이의 연동을 통한 큰 프레임워크인 MPEG-21이 진행 중이다. MPEG-21 의 목표는 표준화 목표를 구체화하는 것부터 진행하여, 최종적으로 “다양한 네트워크 환경과 단말기에 있어서, 투명하고 통합적으로 멀티미디어 자원의 이용을 가능하게 하는 것”이다. 본 논문에서는 현재 표준화 작업이 진행 중인 MPEG-21 을 기반으로 하는 Testbed를 제안한다. Testbed는 server, client, DIA(Digital Item Adaptation) 의 세 모듈로 구성된다. Server 의 역할은 멀티미디어 컨텐츠를 Digital Item(DI)으로 생성하고, client 가 DI를 요구할 경우 DIA 모듈을 통해서 변환된 DI를 client 에게 제공한다. DIA 모듈은 server 에서 동작되며 client로부터 요청된 DI를 분석하고 client로부터 전송된 환경 정보를 이용하여 client 환경에 적합하게 변환된 (adapted) DI를 생성하는 것이 주 기능이다. Client 는 server 에 저장되어 있는 DI를 선택하고 user preference, terminal capability 등의 필요한 정보를 server로 전송한다. Testbed 에서는 스포츠 경기의 동영상, 정지 영상, 경기 내용 역사를 기록한 파일 등의 DI를 이용한다. 표현 언어는 XML이며, HTTP 기반의 Web 환경에서 구동되도록 설계된다.스템 사이에 의미 있는 데이터 전송, 지식 획득을 위해 정보 기술 분야에서 활용해야 할 영역으로 XML Web Services, Multi-agent Systems, 전문가 컴뮤니티를 위한 그룹웨어 연구 개발에 관해 사례 중심으로 발표한다.다 신선한 공기를 넣어 주었을 때는 배의 발달이 많이 늦어져 배양 3주째에 다른 처리보다 배의 수가 훨씬 적었다. 체세포배가 발달하는 동안에는 산소를 많이 요구하지 않으나 성숙하는 동안에는 산소를 많이 요구하는 것으로 생각된다.적인 것으로 나타났다. 다만, 곡선형은 물론 직선형에서도 열교환 튜브의 배치밀도, 튜브 길이 및 두께 등의 변화에 따른 최적화 연구가 수반되어야 할 것으로 판단된다.에서 제공된 API는 객체기반 제작/편집 도구에 응용되어 다양한 멀티미디어 컨텐츠 제작에 사용되었다.x factorization (NMF), generative topographic mapping (GTM)의 구조와 학습 및 추론알고리즘을소개하고 이를 DNA칩 데이터 분석 평가 대회인 CAMDA-2000과 CAMDA-2001에서 사용된cancer diagnosis 문제와 gene-drug dependency analysis 문제에 적용한 결과를 살펴본다.0$\mu$M이 적당하며, 초기배발달을 유기할 때의 효과적인 cysteamine의 농도는 25~50$\mu$M인 것으로 판단된다.N)A(N)/N을 제시하였다(A(N)=N에 대한 A값). 위의 실험식을 사용하여 헝가리산 Zempleni 시료(15%$S_{XRD}$)의 기본입자분포로부터 %$S_{XRD}$를 계산한 결과, 16%$S_{XRD}$의 결과값을 얻을 수 있었다. 따라서, 본 연구에서 도출한 관계식들이 유효함을 확인할 수 있었다.계식들이 유효함을 확인할 수 있었다.할 때 약간의 증가

  • PDF

Markov Chain Model-Based Trainee Behavior Pattern Analysis for Assessment of Information Security Exercise Courses (정보보안 훈련 시스템의 성취도 평가를 위한 마코브 체인 모델 기반의 학습자 행위 패턴 분석)

  • Lee, Taek;Kim, Do-Hoon;Lee, Myong-Rak;In, Hoh Peter
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.12
    • /
    • pp.1264-1268
    • /
    • 2010
  • In this paper, we propose a behavior pattern analysis method for users tasking on hands-on security exercise missions. By analysing and evaluating the observed user behavior data, the proposed method discovers some significant patterns able to contribute mission successes or fails. A Markov chain modeling approach and algorithm is used to automate the whole analysis process. How to apply and understand our proposed method is briefly shown through a case study, "network service configurations for secure web service operation".

Development of an online robot education community based on Web 2.0 (웹2.0 기반 온라인 로봇교육 커뮤니티의 개발)

  • Sung, Young-Hoon;Ha, Seok-Wun
    • Journal of The Korean Association of Information Education
    • /
    • v.13 no.3
    • /
    • pp.273-280
    • /
    • 2009
  • The internet becomes a new communication tool in the knowledge and information society and the people are expanded at the place of information interchange and exchange of view. In recent robot education institutions provide their own official homepages to introduce the robot educational resources. But because they have restrictive searching the functions and providing general robot education resources and don't offer a place that teachers can express their thoughts and share common interests with other users, online community among teachers for robot education and users couldn't have built. In this paper, we propose an Online Robot Education Community(OREC) that teachers and users in different robot education institutions can interchange or share their technical information, learn robot techniques, participate in discussion of their experiences on work, share their common interests, and be provided updated latest news in real-time.

  • PDF

A Fashion Design Recommender Agent System using Collaborative Filtering and Sensibilities related to Textile Design Factors (텍스타일 기반의 협력적 필터링 기술과 디자인 요소에 따른 감성 분석을 이용한 패션 디자인 추천 에이전트 시스템)

  • 정경용;나영주;이정현
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.10 no.2
    • /
    • pp.174-188
    • /
    • 2004
  • In the life environment changed with not only the quality and the price of the products but also the material abundance, it is the most crucial factor for the strategy of product sales to investigate consumer's sensibility and preference degree. In this perspective, it is necessary to design and merchandise the products in cope with each consumer's sensibility and needs as well as its functional aspects. In this paper, we propose the Fashion Design Recommender Agent System (FDRAS-pro) for textile design applying collaborative filtering personalization technique as one of the methods of material development centered on consumer's sensibility and preference. For a collaborative filtering system based on textile, Representative-Attribute Neighborhood is adopted to determine the number or neighbors that will be used for preferences estimation. Pearson's Correlation Coefficient is used to calculate similarity weights among users. We build a database founded on the sensibility adjectives to develop textile designs by extracting the representative sensibility adjectives from users' sensibility and preferences about textile designs. FDRAS-pro recommends textile designs to a customer who has a similar propensity about textile. To investigate the sensibility and emotion according to the effect of design factors, fertile designs were analyzed in terms of 9 design factors, such as, motif source, motif-background ratio, motif variation, motif interpretation, motif arrangement, motif articulation, hue contrast, value contrast, chroma contrast. Finally, we plan to conduct empirical applications to verify the adequacy and the validity of our system.

Neural Net Agent for Distributed Information Retrieval (분산 정보 검색을 위한 신경망 에이전트)

  • Choi, Yong-S
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.10
    • /
    • pp.773-784
    • /
    • 2001
  • Since documents on the Web are naturally partitioned into may document database, the efficient information retrieval process requires identifying the document database that are most likely to provide relevant documents to the query and then querying the identified document database. We propose a neural net agent approach to such an efficient information retrieval. First, we present a neural net agent that learns about underlying document database using the relevance feedbacks obtained from many retrieval experiences. For a given query, the neural net agent, which is sufficiently trained on the basis of the BPN learning mechanism, discovers the document database associated with the relevant documents and retrieves those documents effectively. In the experiment, we introduce a neural net agent based information retrieval system and evaluate its performance by comparing experimental results to those of the conventional well-known approaches.

  • PDF

Recommender system using BERT sentiment analysis (BERT 기반 감성분석을 이용한 추천시스템)

  • Park, Ho-yeon;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.2
    • /
    • pp.1-15
    • /
    • 2021
  • If it is difficult for us to make decisions, we ask for advice from friends or people around us. When we decide to buy products online, we read anonymous reviews and buy them. With the advent of the Data-driven era, IT technology's development is spilling out many data from individuals to objects. Companies or individuals have accumulated, processed, and analyzed such a large amount of data that they can now make decisions or execute directly using data that used to depend on experts. Nowadays, the recommender system plays a vital role in determining the user's preferences to purchase goods and uses a recommender system to induce clicks on web services (Facebook, Amazon, Netflix, Youtube). For example, Youtube's recommender system, which is used by 1 billion people worldwide every month, includes videos that users like, "like" and videos they watched. Recommended system research is deeply linked to practical business. Therefore, many researchers are interested in building better solutions. Recommender systems use the information obtained from their users to generate recommendations because the development of the provided recommender systems requires information on items that are likely to be preferred by the user. We began to trust patterns and rules derived from data rather than empirical intuition through the recommender systems. The capacity and development of data have led machine learning to develop deep learning. However, such recommender systems are not all solutions. Proceeding with the recommender systems, there should be no scarcity in all data and a sufficient amount. Also, it requires detailed information about the individual. The recommender systems work correctly when these conditions operate. The recommender systems become a complex problem for both consumers and sellers when the interaction log is insufficient. Because the seller's perspective needs to make recommendations at a personal level to the consumer and receive appropriate recommendations with reliable data from the consumer's perspective. In this paper, to improve the accuracy problem for "appropriate recommendation" to consumers, the recommender systems are proposed in combination with context-based deep learning. This research is to combine user-based data to create hybrid Recommender Systems. The hybrid approach developed is not a collaborative type of Recommender Systems, but a collaborative extension that integrates user data with deep learning. Customer review data were used for the data set. Consumers buy products in online shopping malls and then evaluate product reviews. Rating reviews are based on reviews from buyers who have already purchased, giving users confidence before purchasing the product. However, the recommendation system mainly uses scores or ratings rather than reviews to suggest items purchased by many users. In fact, consumer reviews include product opinions and user sentiment that will be spent on evaluation. By incorporating these parts into the study, this paper aims to improve the recommendation system. This study is an algorithm used when individuals have difficulty in selecting an item. Consumer reviews and record patterns made it possible to rely on recommendations appropriately. The algorithm implements a recommendation system through collaborative filtering. This study's predictive accuracy is measured by Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). Netflix is strategically using the referral system in its programs through competitions that reduce RMSE every year, making fair use of predictive accuracy. Research on hybrid recommender systems combining the NLP approach for personalization recommender systems, deep learning base, etc. has been increasing. Among NLP studies, sentiment analysis began to take shape in the mid-2000s as user review data increased. Sentiment analysis is a text classification task based on machine learning. The machine learning-based sentiment analysis has a disadvantage in that it is difficult to identify the review's information expression because it is challenging to consider the text's characteristics. In this study, we propose a deep learning recommender system that utilizes BERT's sentiment analysis by minimizing the disadvantages of machine learning. This study offers a deep learning recommender system that uses BERT's sentiment analysis by reducing the disadvantages of machine learning. The comparison model was performed through a recommender system based on Naive-CF(collaborative filtering), SVD(singular value decomposition)-CF, MF(matrix factorization)-CF, BPR-MF(Bayesian personalized ranking matrix factorization)-CF, LSTM, CNN-LSTM, GRU(Gated Recurrent Units). As a result of the experiment, the recommender system based on BERT was the best.

Leakage Prevention System of Mobile Data using Object Recognition and Beacon (사물인식과 비콘을 활용한 모바일 내부정보 유출방지 시스템)

  • Chae, Geonhui;Choi, Seongmin;Seol, Jihwan;Lee, Jaeheung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.17-23
    • /
    • 2018
  • The rapid development of mobile technology has increased the use of mobile devices, and the possibility of security incidents is also increasing. The leakage of information through photos is the most representative. Previous methods for preventing this are disadvantageous in that they can not take pictures for other purposes. In this paper, we design and implement a system to prevent information leakage through photos using object recognition and beacon. The system inspects pictures through object recognition based on deep learning and verifies whether security policies are violated. In addition, the location of the mobile device is identified through the beacon and the appropriate rules are applied. Web applications for administrator allow you to set rules for taking photos by location. As soon as a user takes a photo, they apply appropriate rules to the location to automatically detect photos that do not conform to security policies.

A System for Automatic Classification of Traditional Culture Texts (전통문화 콘텐츠 표준체계를 활용한 자동 텍스트 분류 시스템)

  • Hur, YunA;Lee, DongYub;Kim, Kuekyeng;Yu, Wonhee;Lim, HeuiSeok
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.12
    • /
    • pp.39-47
    • /
    • 2017
  • The Internet have increased the number of digital web documents related to the history and traditions of Korean Culture. However, users who search for creators or materials related to traditional cultures are not able to get the information they want and the results are not enough. Document classification is required to access this effective information. In the past, document classification has been difficult to manually and manually classify documents, but it has recently been difficult to spend a lot of time and money. Therefore, this paper develops an automatic text classification model of traditional cultural contents based on the data of the Korean information culture field composed of systematic classifications of traditional cultural contents. This study applied TF-IDF model, Bag-of-Words model, and TF-IDF/Bag-of-Words combined model to extract word frequencies for 'Korea Traditional Culture' data. And we developed the automatic text classification model of traditional cultural contents using Support Vector Machine classification algorithm.

Development of Coupon System for Youth's Experiential Learning using QR Code (QR코드를 이용한 청소년 체험학습 쿠폰 시스템 개발)

  • Park, Soon-Ho;Kim, Yu-Doo;Moon, Il-Young
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.5 no.1
    • /
    • pp.52-57
    • /
    • 2013
  • Because of rapid spread of the PC, many users have been enjoying a variety of content as PC. Especially in recent years, young people has increased dramatically PC usage. Young people get more easily information using a PC. Especially they relieve their stress through online games and feel another fun of virtual reality. It is obviously a good effect that they contact IT culture with rapidly developed. But young people's perspective with world is narrow because of doing more indoor activities than outdoor. Therefore we built Spot experience voucher system using smart phone application. We hope that many young people act outdoor activities. And Our product offer hybrid device by developing HTML5-based app. Thus this app will give interest of spot-experience to young-people. So If young people use this app, they can have many experience and see diverse aspects.

  • PDF