• Title/Summary/Keyword: Weathered soil ground

Search Result 167, Processing Time 0.037 seconds

Effect of Antecedent Rainfall on Infiltration Characteristics in Unsaturated Soil (선행강우의 영향에 따른 불포화토의 침투특성 분석)

  • Yoon, Gwi-Nam;Shin, Hosung;Kim, Yun-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.8
    • /
    • pp.5-15
    • /
    • 2015
  • One-dimensional rainfall laboratory tests using gneissic weathered soil were conducted to investigate effect of antecedent rainfall on infiltration characteristics. Experimental results using samples from Chuncheon and Chungju sites showed that rainfall onto the ground surface decreased initial negative pore water pressure of unsaturated soils, which recovered gradually after the end of rainfall. Rainfall intensity increases water infiltration rate, and infiltration rate during main rainfall is faster than that of the preceding rainfall. It is considered that higher water saturation after antecedent rainfall increases water infiltration rate during main rainfall. In particular, Chungju sample with higher clay content had slower recovery of negative pore water pressure and infiltration rate. Numerical results using finite element slope stability analysis showed that reduction of initial negative pore pressure due to rainfall infiltration deteriorates slope stability, and diffusion of pore water pressure after the end of rainfall further reduces FS of the slope in the short term. Main rainfall after prior rainfall further reduced factor of safety of the unsaturated slope. Pattern of antecedent rainfall has a significant impact on the magnitude and distribution of initial pore water pressure in unsaturated soils which are controlling factor to assess factor of safety of unsaturated slope during rainfall.

A case study of monitored natural attenuation at the petroleum hydrocarbon contaminated site: I. Site characterization (유류오염부지에서 자연저감기법 적용 사례연구: I. 부지특성 조사)

  • 윤정기;이민효;이석영;이진용;이강근
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.4
    • /
    • pp.27-35
    • /
    • 2003
  • The study site located in an industrial complex has a Precambrian age gneiss as a bedrock. The poorly-developed, disturbed soils in the study site have loamy-textured surface soil (1 to 2 m) and gravelly sand alluvium subsurface (2 to 6 m) on the top of weathered gneiss bedrock. The depth of the groundwater table was about 3.5 m below ground surface and increased toward down-gradient of the site. The hydraulic conductivity of transmitted zone (gravelly coarse sand) was in the range of 5.0${\times}$10$\^$-2/∼1.85${\times}$10$\^$-1/ cm/sec. The fine sand layer was in the range of 1.5${\times}$10$\^$-3/ to 7.6${\times}$10$\^$-3/ cm/sec. and the reclaimed upper soil layer was less than 10$\^$-4/ cm/sec. Toluene, ethylbenzene, and xylene (TEX) was the major contaminant in the soil and groundwater. The average depth of the soil contamination was about 1.5 m in the gravelly sand alluvium layer. At the depth interval 2.4∼4.8 m, the highest contamination in the soil is located approximately 50 to 70 m from the suspected source areas. The concentration of TEX in the groundwater was highest in the suspected source area and a lesser concentration in the center and southwest parts of the site. The TEX distribution in the groundwater is associated with their distribution in the soil. Microbial isolation showed that Pseudomonas flurescence, Burkholderia cepacia, and Acinetobactor lwoffi were the dominant aerobic bacteria in the contaminated soils. The analytical results of the groundwater indicated that the concentrations of dissolved oxygen (DO), nitrate, and sulfate in the contaminated area were significantly lower than their concentrations in the none-contaminated control area. The results also indicated that groundwater at the contaminated area is under anaerobic condition and sulfate reduction is the predominant terminal electron accepting process. The total attenuation rate was 0.0017 day$\^$-1/ and the estimated first-order degradation rate constant (λ) was 0.0008 day$\^$-1/.

Mechanical and Hydraulic Stabilizing Method of Steel Pipe Propulsion Tunneling Using Liquid Nitrogen (액체질소를 이용한 강관압입공법의 역학적 수리학적 안정화공법)

  • Ji, Subin;Lee, Kicheol;Lee, Ju-hyung;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.3
    • /
    • pp.57-66
    • /
    • 2016
  • In this study, to prevent possible collapse caused by hydraulic or mechanical instability, liquid nitrogen injection method is developed and implemented at the tip of drilling auger of steel pipe propulsion tunneling. In this study, 1/5-scale model auger and sand chamber were manufactured. The prototype diameter of steel pile (or casing) is assumed about 1,000 mm. For the frictional sandy soils and plastic weathered soils, liquid nitrogen injection methods were tested varying water contents of the soils. For the induced hydraulic instability, the ground near the drilling auger was frozen within approximately 5 minutes preventing mechanical collapse and water infiltration. Securing stability of steel pile propulsion tunneling using liquid nitrogen was much more effective for which the water content of the soil somewhat exceeds the optimum water content.

Slopes Risk Assessment Techniques through Pattern Classification (패턴분류를 통한 산지사면의 위험도 평가 기법)

  • Kim, Min-Seub;Kim, Jin-Young
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.189-199
    • /
    • 2015
  • Our country's leading granite weathered soil of the ground slope failures that occur in cutting slope most cases, it does not require in-depth to the shear strength most of the surface layer is affected by weathering (1~2 m) at a shallow depth close to the ground, it is important to identify the reliability. Based on the result obtained in actual field investigation, the field slope type was classified by each type of wedge slope, Infinite slope, finite slope -I and finite slope -II, and the slope stability was examined respectively. In addition, using the numerical analysis results, the relationship between the slope inclination angle and safety factor was analyzed and it tried to offer basic data to which the stability in the field slope was able to be estimated by analyzing the safety factor change of the slope according to the slope type. In this study, classified into four types of natural slope, safety factor estimation method by slope types is proposed through the numerical analysis. However, some limit exists in generalizing in this research because it does not test various case studies. Therefore, the case study of a wide range of various sypes to assess the safety of various types slope can be made, accommodate a wide range of field conditions reasonable risk evaluation criteria may be derived.

A Case Study on Penetrating Hard Rock with Alternative Methods of Shield TBM for Weathered Layer in Subway Construction (지하철공사에서 풍화대용 쉴드 TBM의 경암 구간 굴진 시 대체공법에 대한 사례연구)

  • Park, Hyung-Keun;Ko, Won Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6D
    • /
    • pp.623-629
    • /
    • 2010
  • Recently, the Shield TBM (Tunnel Boring Machine) construction method is used gradually to increase at the Tunnel Constructin site. However the design and application of the Shield TBM were carried out without sufficient investigation of the ground conditions in the construction site. Due to insufficient understanding to the corresponding equipment is frequently occurring unexpected construction cost and extension of a construction period. The most suitable alternative construction method was determined by analyzing tunneling rate, duration, construction cost of shield machine and tunneling data of alternative method. The result of the case study is suggested as follows. First, the accurate soil exploration on the construction site should be preceded to prevent from tunneling stoppage and schedule delay. Second, the most suitable selection of the shield machine to the ground conditions of the construction site should be executed based on the investigation. Third, the best alternative method for boring of hard rock section is 'hard rock blasting after open cut and cover method'.

Heavy Metal Concentration of Soils and Plants in Baekdong Serpentinite Area, Chungnam - A Case of Pinus densiflora and Pinus rigida - (충남 백동 사문암지역의 토양 및 식물체내 중금속 함량 - 소나무 및 리기다소나무를 중심으로 -)

  • 민일식;송석환;김명희;장관순
    • Korean Journal of Environment and Ecology
    • /
    • v.12 no.3
    • /
    • pp.271-278
    • /
    • 1998
  • Heavy metal concentrations in rocks and soils from serpentinite(SP) and in plants (Pinus densiflora: PD and Pinus rigida: PR) were examined at Baekdong mine in Hongsung, Chungnam. Parent rocks were compared with amphibole schist(AS) and gneiss(GN) and plants divided the above grounds and roots were examined, respectively. In rocks, Ni, Cr, Co, Fe concentrations in SP were higher than those in AS and GN. The concentrations of top soils had the similar differences to their rocks; especially Ni, Cr, Co, Fe concentrations were the highest in SP, Zn and Sc concentrations, however, were the highest in AS. Average Ni, Cr, Co, Au, As, Sb, W concentrations of PD were the highest in SP and especially Ni, Cr, Co concentrations were accorded with changes of rocks and top soils. Zn and Sc concentrations in AS were higher and Fe and Mo concentrations in GN were higher than those in SP. Compared with two plants in the same serpentinite sites, most elements of PR were higher than those of PD. Therefore, these suggested PR absorbed much heavy metal than PD. Most element concentrations of roots in two plants and three rocks were higher than those of the above ground. Relative ratios (average plant concentration/soil concentration) of Ni, Cr, Co, Zn, Sc, Fe in AS and GN were higher than those of SP. Especially, relative ratios of most elements except Zn in GN were the highest.

  • PDF

A study on the effect of support structure of steel rib in partitioning excavation of tunnel (터널 상·하반 분할 굴착 시 강지보재 지지구조 효과에 대한 연구)

  • Kim, Ki-Hyun;Kim, Yeon-Deok;Hwang, Beoung-Hyeon;Choi, Yong-Kyu;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.5
    • /
    • pp.543-561
    • /
    • 2020
  • This paper is the result of the study on the effect of the support structure of the tunnel steel rib. In tunnel excavation, the top and bottom half excavation methods result in subsidence of steel rib reinforcement due to insufficient support of steel rib reinforcement when the ground is poor after excavation. The foundation of the steel rib installed in the upper half excavates the bottom part of the base, causing the subsidence to occur due to various effects such as internal load and lateral pressure. As a result, the tunnel is difficult to maintain and its safety is problematic. To solve these problems, steel rib support structures have been developed. For the purpose of verification, the behavior of the supporting structure is verified by model experiments reduced to shotcrete and steel rib material similarity, the numerical analysis of ΔP and ΔP generated by bottom excavation by Terzaghi theoretical equation. As a result, it was found that the support structure of 20.100~198.423 kN is required for the 10~40 m section of the depth for each soil of weathered soil~soft rock. In addition, as a result of the reduced model experiment, a fixed level of 50% steel rib deposit of steel rib support structure was installed. The study shows that the installation of steel rib support structures will compensate for uncertainties and various problems during construction. It is also thought that the installation of steel rib support structure will have many effects such as stability, economy, and air reduction.

Improvement Effects of Cement Grouting using Vibration Method through a Field Test (현장시험을 통한 시멘트 진동주입공법의 보강효과)

  • Han, Sanghyun;Yea, Geugweun;Kim, Hongyeon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.5
    • /
    • pp.23-29
    • /
    • 2014
  • So far, the grouting using pressure injection has been extensively used to avoid adverse effects such as soil disturbance. Whereas, the pressure injection to the limitations of the diffusion range, so that the kinks would last injection of cement particles by introducing a frequency oscillation effect improved injection method have been recently developed. In this study, a pilot test was performed to compare injection effects of the both methods. The injections using both methods were tested on the embankment which consists of core clay and weathered soil. Subsequently, the injected volume, SPT N values, in-situ permeability and electrical resistivity were measured to compare their effects. The vibration method showed more effective permeation comparing with the pressure method. Also, it showed more homogeneously improved ground than the existing method. For SPT results, the vibration method presented increase of mean N value as much as 17.4 % comparing with the conventional method. Higher electrical resistivity was presented in case of injecting with vibration method and it indicated the injection was extensively completed. Finally, it is expected that the economic feasibility will be improved by decrease of drilling spacing, when the existing method is replaced with vibration method.

Settlement Instrumentation of Greenhouse Foundation in Reclaimed Land (간척지 온실 기초의 침하량 검토)

  • Choi, Man Kwon;Yun, Sung Wook;Yu, In Ho;Lee, Jong-Won;Lee, Si Young;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.24 no.2
    • /
    • pp.85-92
    • /
    • 2015
  • This study examined the settlement of a 1-2W type greenhouse using a timber pile, which was recently established on Gyehwa-do reclaimed land, in order to obtain base data for the construction of a greenhouse on reclaimed land. The results of this study are as follows. foundation and timber pile increased over time, irrespective of the interior and exterior of the upon investigation of the ground, it was confirmed that there was no soft rock stratum (bedrock), and that a sedimentary stratum existed under the fill deposit, which is estimated to have been reclaimed during the site renovation. It was also found that a weathered zone was located under the fill deposit and sedimentary stratum, and that the soil texture of the entire ground floor consisted of clay mixed with sand, silty clay, and granite gneiss, in that order, regardless of boreholes. In addition, the underground water level was 0.3m below ground, regardless of boreholes. Despite a slight difference, the settlement of the greenhouse or measurement sites (channels). With regard to the pillar inside the greenhouse, except in the case of CH-2, the data at a site located on the side wall of the greenhouse (wind barrier side) indicated vibrations of relatively larger amplitude. Moreover, the settlement showed a significant increase during a certain period, which was subsequently somewhat reversed. Based on these phenomena, it was verified that the settlement range of each site in the interior and exterior of the greenhouse was between 1.0 and 7.5mm at this time, except in the case of CH-1. The results of the regression analysis indicated good correlation, with the coefficient of determination by site ranging between 0.6362 and 0.9340. Furthermore, the coefficient of determination ranged between 0.6046 and 0.8822 on the exterior of the greenhouse, which is lower than inside the greenhouse, but still indicates significant correlation.

A study on the field tests and development of quantitative two-dimensional numerical analysis method for evaluation of effects of umbrella arch method (UAM 효과 평가를 위한 현장실험 및 정량적 2차원 수치해석기법 개발에 관한 연구)

  • Kim, Dae-Young;Lee, Hong-Sung;Chun, Byung-Sik;Jung, Jong-Ju
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.1
    • /
    • pp.57-70
    • /
    • 2009
  • Considerable advance has been made on research on effect of steel pipe Umbrella Arch Method (UAM) and mechanical reinforcement mechanism through numerical analyses and experiments. Due to long analysis time of three-dimensional analysis and its complexity, un-quantitative two-dimensional analysis is dominantly used in the design and application, where equivalent material properties of UAM reinforced area and ground are used, For this reason, development of reasonable, theoretical, quantitative and easy to use design and analysis method is required. In this study, both field UAM tests and laboratory tests were performed in the residual soil to highly weathered rock; field tests to observe the range of reinforcement, and laboratory tests to investigate the change of material properties between prior to and after UAM reinforcement. It has been observed that the increase in material property of neighboring ground is negligible, and that only stiffness of steel pipe and cement column formed inside the steel pipe and the gap between steel pipe and borehole contributes to ground reinforcement. Based on these results and concept of Convergence Confinement Method (CCM), two dimensional axisymmetric analyses have been performed to obtain the longitudinal displacement profile (LDP) corresponding to arching effect of tunnel face, UAM effect and effect of supports. In addition, modified load distribution method in two dimensional plane-strain analysis has been suggested, in which effect of UAM is transformed to internal pressure and modified load distribution ratios are suggested. Comparison between the modified method and conventional method shows that larger displacement occur in the conventional method than that in the modified method although it may be different depending on ground condition, depth and size of tunnel, types of steel pipe and initial stress state. Consequently, it can be concluded that the effect of UAM as a beam in a longitudinal direction is not considered properly in the conventional method.