• Title/Summary/Keyword: Weathered granite rock

Search Result 103, Processing Time 0.027 seconds

Experimental Application of Consolidants Using Artificially Weathered Stones(II): Focusing on Accelerated Weathering Test (인공풍화암을 이용한 강화제의 적용실험 연구(II): 촉진풍화실험을 통한 강화처리 암석의 내구성 평가)

  • Lee, Jae Man;Lee, Myeong Seong;Park, Sung Mi;Lee, Mi Hye;Kim, Jae Hwan
    • Journal of Conservation Science
    • /
    • v.29 no.3
    • /
    • pp.249-259
    • /
    • 2013
  • This study was experimented on accelerated weathering test using salt and freeze-thaw to prove effects of consolidants and consolidation for stone cultural heritage. The samples used four kinds of stones (Gyeongju Namsan Granite, Iksan Granite, Yeongyang Sandstone and Jeongseon Marble) which to distributed by three type of weathering grade (Fresh, Weathered Stone and Highly Weathered Stone) added for thermal treatment. The samples were treated with three consolidants (Wacker OH 100, Remmers KSE 300 and 1T1G), and tested by 500 cycles with freezing-thawing and 50 cycles of salt weathering test. As a results of freezing-thawing test, the crack and destruction occurred from some samples. And total immersed samples maintained effect of consolidation to 200 cycles. Also, The rock particle was fall off and gradually destructed by salts weathering test. The consolidated sample relatively had fewer changes by the weathering than not treated sample. The sprayed sample had not continuous effect on weathering.

A Study on the Indexes and Properties of Mechanical Weathering to Granite Distributed in Korea (화강암의 풍화산물에 대한 기계적 풍화지수의 특성에 관한 연구)

  • Rheem, Chong-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.28 no.2
    • /
    • pp.99-111
    • /
    • 1993
  • The transformation of rocks into unconsoli-dated debris is the prime geomorphic processes including weathering and soil forming process. In these processes, rocks tend to be unconsol-idated debris with small particles. Particularly, typical granite is more likely affected by weathering, since the rock consists of quartz, feldspar and mica that can be easily coarse-grained and well jointed without bedding. The purposes of this study are to clarify the index and properties of mechanical weathering that contributed to transformation of granite distributed in Korea. A total of seventy-three samples of weathering products of granite in Korea were collected during the three-year period, March 30, 1989 to February 21, 1992. The prticle analysis was performed for clay, silt and sand using Sieve and Hydrometer. The results of the analysis are as the followings: First, soil textures in the study area are included seven categories of textures as C, CL, SCL, Sil, SL, LS, and S. Among these textures, the most frequent soil texture were SL, S and SCL in order. Second, the weathering products of granite are crumbled by weathering and hydrothermal. Clay texture consisted of fine materials seems to be influenced by hydrothermal, while Sand texture composed of coarse materials, seems to be significantly influenced by weathering. Third, the index of mechanical weathering by region indicates that Hawngdeung(1) is the lowest as 2.37 and the index by soil texture shows that Clay texture is the lowest as 2.46. Forth, the regression analysis of MW showes that sand/clay variable is the most significant variable. Finally, pedochemical weathering is prevailed on the clayey gruss and geochemical weathering is on the gruss and shattering is on the weathered rock, strongly, but the fine materials in some sites were formed by argillation of hydrothermal.

  • PDF

Characteristics of Stone-monuments and geological studies on the rocks( I ) - Weonju-city, Weonju-gun, Hweongseong-gun and Honcheon-gun, Kangweon-do - (석조문화재의 특징과 암석에 대한 지질학적 연구( I ) - 강원도 원주시.원주군.횡성군 및 홍천군 지역 -)

  • Lee, S.H.;Park, K.R.
    • Journal of Conservation Science
    • /
    • v.1 no.1 s.1
    • /
    • pp.40-59
    • /
    • 1992
  • Stone-monuments, distributed in this area, have been investigated and studied in geological and conservational points of view. They are seemed to have been built from the Shilla to Koryeo Kingdoms, although more systematic studies are needed. The used rocks in these monuments are mainly biotite granite of Jurassic age. They are strongly weathered and partly exfoliated along igneous lineation about 1-2 mm(maximum up to 5 mm). They are mainly effected by chemical weathering to be selectively dissolved and by various kind of moss. For conservation, it must be scientifically considered based on characteristics and kind of rock phase, factors on weathering process, situation and protection.

  • PDF

Long Term Stability of Slopes Excavated in Weathered Granite Rock Masses Subjected to Extreme Climatic Conditions (극한 기후 조건하에서 풍화된 화강암반 절취사면에 대한 장기적 안정성 연구)

  • Yang, Kwang-Yong;Park, Yeon-Jun;You, Kwang-Ho;Woo, Ik;Park, Chan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.655-662
    • /
    • 2003
  • Slope stability is an important issue ill civil engineering works or in open pit mines where both economy and efficiency is required. These are the long-term stability problems which depend on the change of physical properties under a certain weather condition. These can also result in progress of weathering which can change mechanical or hydro-geological properties of rock mass considerably. In this study, weathering in nature was simulated by freeze-thaw test and Soxhlet test which represent mechanical and chemical weathering respectively. Measured were elastic wave velocities, absorption rate, volume change. Uniaxial compression strengths before and after the weathering tests were also measured. The change in weight and volume of the specimens were not clearly related to the weathering process, but P, S wave velocities were clearly decreased as weathering progresses. For some class of rocks, P-wave velocity was increased probably because of the saturation due to improved connectivity of the pre-existing pores. Based on the test results, stability of the slopes were analyzed using FLAC$\^$2D/. Due to the reduced strength parameters, the factors of safety were decreased for the selected sites.

  • PDF

Assessment and Calibration of Ultrasonic Velocity Measurement for Estimating the Weathering Index of Stone Cultural Heritage (석조문화재의 풍화지수 산정을 위한 초음파속도의 평가 및 보정)

  • Lee, Young-Jun;Keehm, Young-Seuk;Lee, Min-Hui;Han, June-Hee;Kim, Min-Su
    • Journal of the Korean earth science society
    • /
    • v.33 no.2
    • /
    • pp.126-138
    • /
    • 2012
  • Ultrasonic method is widely used for the evaluation of weathering index and of degree of deterioration because it is easily applicable $in$ $situ$. The basic idea of the method is that the ultrasonic velocity decreases as a rock is being weathered. Thus, the difference of ultrasonic velocities between fresh rock and weathered rock indicates the degree of weathering. In this method, the ultrasonic velocity of fresh rock is assumed to be 5,000 m/s. However, this assumption can cause significant errors in estimating weathering index, especially in case that those rocks of the same type have a wide range of ultrasonic velocities such as in Korea. Therefore, we obtained twenty rock specimens and sixty core samples commonly used for stone cultural heritages in Korea, and measured ultrasonic velocities. From the results, we found that the ultrasonic velocities of the same rock type, granite samples range from 3,118 to 5,380 m/s, and that the estimated weathering index can be highly biased if we use the fixed value of 5,000 m/s. We created a database (DB) by combining the measurement data and reported it. We also measured ultrasonic velocities by direct and indirect methods to quantify the calibration coefficient for each sampling site. We found that the calibration coefficients vary widely from site to site (1.31-1.76). Other factors, such as operator bias and temperature did not show any significant effect on errors in ultrasonic velocity measurements. Lastly, we applied our ultrasonic velocity DB and calibration coefficients to a stone cultural heritage, Bonghwang-ri Buddha statue. Our estimation of the weathering index was 0.3, 0.1 smaller than that by conventional method. The degree of deterioration was also different, "moderately weathered", while conventional method gave "highly weathered". Since other independent studies reported that the degree of deterioration of the Buddha statue was "moderately weathered", our estimation seems to be more accurate. Thus our method can help accurately evaluate the weathering index and the conservation planning for a stone cultural heritage.

Study on the Convergence of the NATM Tunnel Constructed in the Weathered Granite (풍화 화강암 지반에 건설된 NATM터널에서의 내공변위 연구)

  • Shin, Sang-Sik;Kim, Hak Joon;Bae, Gyu Jin
    • Tunnel and Underground Space
    • /
    • v.25 no.6
    • /
    • pp.515-526
    • /
    • 2015
  • Predicting and measuring tunnel convergence is very crucial for estimating tunnel stability and economical construction of NATM tunnels. The method to estimate the tunnel convergence that occurs before and after construction is proposed based on literature reviews. The total displacement occurring related to tunnel construction is determined to be about 2.5 times that of measured displacements. The results of displacement measurements at two tunnels constructed with similar rock types are examined for the investigation of factors affecting the tunnel convergence. The average convergence of Gyungju A Tunnel is about 6.7 times bigger than that of Daejeon B Tunnel. The possible causes of the large convergence in Gyungju A Tunnel are suggested. In order to predict the convergence of tunnels, careful investigation of the geological structures in the ground surface and the influence of external conditions as well as careful face mapping of the tunnel face should be conducted.

Ground Characterization of the Cheongju Granite Area Using the Geophysical Methods (물리탐사를 이용한 청주 화강암 지역의 지반특성 파악)

  • Kim Ji-Soo;Han Soo-Hyung;Seo Yong-Seok;Lee Yong-Jae
    • The Journal of Engineering Geology
    • /
    • v.15 no.1
    • /
    • pp.41-55
    • /
    • 2005
  • This research is aimed at investigating the ground characterization of the Cheongju granite area using the geophysical methods. Test site was chosen from the building site in Chungbuk University, Chongju, Chungbuk province. Furthermore, geophysical methods are employed on the outcrops in the east to map the distribution of fault and intrusion and reveal the degree of weathering. The subsurface structure mapped from seismic re-fraction survey mainly consists of two units of weathered soil and rock. Threshold of the units were determined on the basis of seismic velocity of 800 m/s, supported from the standard classification table. From the results of standard penetrating test(SPT), these units are found to show medium-high and high density, respectively. Weathering soil is subdivided in unsaturated layer and saturated layer with thresholds of seismic velocity (500 m/s) and resistivity (200 ohm-m). In particular, unsaturated layer is again classified into dry and wet portions using the GPR section. The boundary between unsaturated and saturated weathering soils corresponds to the groundwater table at depth of approximately 5~6.2 m, which is well correlated with the one from drill-core data. However, bedrock is not delineated by geophysical methods. In the GPR section, fault and intrusion observed on the outcrop are revealed not to extend to the building site. With respect to weathering degree, the outcrop characterized by low resistivity and velocity corresponds to the grade of 'completely weathered' from the geotechnical investigations.

Rock Weathering and Geochemical Characteristics in the KURT (한국원자력연구소 지하처분연구시설(KURT)의 암석 풍화 및 지화학적 특성)

  • Lee, Seung-Yeop;Baik, Min-Hoon;Cho, Won-Jin;Hahn, Pil-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.4
    • /
    • pp.321-328
    • /
    • 2006
  • A basic research was conducted on the mineral weathering and geochemical characteristics in the KURT (KAERI Underground Research Tunnel), which was recently constructed at a site in KAERI. Some rock samples exposed during the KURT construction were examined using a microscope and chemical analysis for some micro-changes of the rocks caused by the chemical weathering. The weathered granite has some small and fine cracks around the rock-forming minerals. In particular, there are a characteristic weathering of feldspar mineral and a preferential leaching of Ca component from the mineral dissolution. In addition, by the dissolution of biotite containing $Fe^{2+}$ component there were iron-oxides precipitates as secondary products into the microcracks of around minerals. The results also show that the micro-cracks initiated from the mineral interior are extended and connected into the larger cracks along the grain boundary with the progress of the weathering. Thus, it is considered that some chemicals dissolved from the fresh rock would be involved in the formation of secondary minerals and migrate interacting with them.

  • PDF

Analysis for Rainfall Infiltration Using Electrical Resistivity Monitoring Survey (강우 침투 특성 분석을 위한 전기비저항 모니터링 탐사)

  • Kim, Sung-Wook;Choi, Eun-Kyeong;Park, Dug-Keun;Yoon, Yeo-Jin;Lee, Kyu-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.7
    • /
    • pp.41-53
    • /
    • 2012
  • During rainfall period, to identify the characteristics of the infiltration of moisture, electrical resistivity monitering survey was carried out to weathered zone. Four regions of geophysical exploration areas with different rock types, four regions were selected. An area consists of mafic granite and three areas are composed of sedimentary rocks (Sandstone, Shale, Unconsolidated Mudstone). Survey was conducted from June (rainy season) to November (dry season), and during the period the change in resistivity was observed. According to the result of monitoring exploration on Geumjeong and Jinju areas, for the estimation of the standard rainfall, it is necessary to estimate the effects of the antecedent rainfall during the rainy season based on the overall rainfall from June till October and also necessary to consider this for the estimation of the half period. Also, the vertical distribution of the low resistivity anomaly zone does not show that the infiltration of moisture does not occur uniformly from the surface of the ground to the lower ground but shows that it occurs along the relaxed gap of the crack or soil stratum of the weathering zone. In Pohang area, the type of moisture infiltration is different from that of the granite or sedimentary rock. Since, after the rainfall, the rate of infiltration to the lower ground is high and the period of cultivation to the lower bedrock aquifer is short, it has similar effect to that of the antecedent rainfall applied for the estimation of the standard rainfall being presently used. In Danyang, due to the degree of water content of the ground, the duration period of the low resistivity anomaly zone observed in the lower ground of the place where clastic sedimentary rock is distributed is similar to that in Pohang area. The degree of lateral water diffusion at the time of localized heavy rain is the same as that of the sedimentary rock in Jinju. According to the above analysis results, in Danyang area, the period when the antecedent rainfall has its influence is estimated as three weeks or so.

Velocity analysis of various granite and its impact on determination of weathering (화강암의 속도 분석과 풍화도 산정에 미치는 영향)

  • Lee, Jae-Sung;Keehm, Young-Seuk
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.201-206
    • /
    • 2008
  • Determining the coefficient of weathering(CW) for stone heritage plays very important role in investigation and conservation plan. In most case, CW is obtained from the empirical relation, which use the difference between sonic velocities of fresh and weathered rocks. In this paper, we measured sonic velocities for the samples from Iksan, Geochang, Wonju, Goesan and Chungju of which our stone heritages are made. We first investigate the uncertainty of velocity by portable measurement by comparing it to lab measurement. There were small difference, but we conclude that the difference is not major. However, the velocity of fresh rock differs significantly among samples: ranging from 3200 to 4400m/s. This cause a lot of error in CW estimation if we use typical fresh rock velocity as of 5000m/s. Thus accurate measurement of the velocity of fresh rock is crucial to CW estimation.

  • PDF