• Title/Summary/Keyword: Weather resistance test

Search Result 51, Processing Time 0.027 seconds

A Study on the Standard Test Method for Thermal Resistance of Military Textile Thermal Insulator for Winter Season (방한을 목적으로 하는 군용 섬유제품 충전재의 보온성 시험방법에 대한 표준화 연구)

  • Yeo, Yong-heon;Hong, Seong-don;Lee, Min-hee;Kim, Kyung-pil;Chung, Il-han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.492-500
    • /
    • 2018
  • The performance evaluation of cold weather clothing is mainly carried out with thermal resistance. However, the results of the revised test method regarding the same specimen were decreased compare to previous one. In addition, there were deviations of the results among the authorized testing institutes according to the different interpretation of the KS test method. This makes it a considerable difficulty to the quality assurance of combat supplies. The purpose of this study is to minimize the variation of the results before and after the revision by analyzing the cause of the decrease in the heat insulation rate according to the revised test method. For this purpose, the difference between the test conditions before and after the revision of KS is analyzed and the possible results are reviewed. In addition, we want to minimize the result deviation between testing laboratories by analyzing the cause of the result deviation between test laboratories according to arbitrary interpretation of the standard. Based on this, we propose a standardized test method to prevent the decrease of the heat insulation rate by checking the pre-revision test method and the condition with the least deviation.

Properties of Temperature Reduction of Cooling Asphalt Pavements Using High-Reflectivity Paints (고반사 도료를 사용한 차열성 아스팔트 도로포장의 온도저감특성)

  • Hong, Chang Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.317-327
    • /
    • 2013
  • Air pollution and artificial heat of urban areas have caused the urban heat island in which asphalt pavements absorb solar heat during the daytime and release the heat at night. Hence, in order to improve the environment of urban areas, it is necessary to examine cooling pavements that can reduce heat on road pavements in urban areas. The application of temperature insulation paints on road pavements require to reduce black brightness for visibility, to increase the reflection rate of infrared light and minimize the reflection rate of visible light. In the study, one part of Acrylic-emulsion was used as a main binder, and the changes in black brightness and the changes of addition ratio (0%, 15%, 30%) of hollow ceramics, as well as kinds of paints (carbon black pigment, mixed mineral pigment) were selected as the main experimental factors. The performance of temperature reduction of cooling pavements was analyzed through the reflection rate of spectrum, the reflection rate of solar heat, and the lamp test. Abrasion resistance, UV accelerated weather resistance, and sliding resistance were tested in real situations. In addition, the performance of heat reduction of testing pavements covered with high-reflection paints was analyzed by using an infrared camera. As the test results, when using mixed mineral paints and hollow ceramic of 30%, the reflection rate of spectrum was 43% in the area of near-infrared ray and 17% in the area of visible light at black brightness of $L^*$=42.89 and the reflection rate of solar heat was 27.5%. Total color difference was ${\Delta}E$=0.27 in the test of UV Accelerated Weather Resistance, indicating almost no changes in color. BPN was more than 53 when scattering #2 and #4 silica sand of more than $0.12kg/m^2$. In Taber's abrasion resistance test, abrasion loss was up to 86.4mg at 500 rotations. The performance of heat reduction was evaluated using an infrared camera at the test section applying high-reflection paints to asphalt pavements, in which the results showed that the temperature was reduced by $12.7^{\circ}C$ on CI-30-40 cooling pavements ($L^*$=38.76) and by $14.2^{\circ}C$ on CI-30-60 cooling pavements ($L^*$=57.12).

Accelerated Prediction Methodologies to Predict the Outdoor Exposure Lifespan of Galvannealed Steel

  • Kim, Ki Tae;Yoo, Young Ran;Kim, Young Sik
    • Corrosion Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.86-91
    • /
    • 2019
  • Generally, atmospheric corrosion is the electrochemical degradation of metal that can be caused by various corrosion factors of atmospheric components and weather, as well as air pollutants. Specifically, moisture and particles of sea salt and sulfur dioxide are major factors in atmospheric corrosion. Using galvanized steel is one of the most efficient ways to protect iron from corrosion by zinc plating on the surface of the iron. Galvanized steel is widely used in automobiles, building structures, roofing, and other industrial structures due to their high corrosion resistance relative to iron. The atmospheric corrosion of galvanized steel shows complex corrosion behavior, depending on the plating, coating thickness, atmospheric environment, and air pollutants. In addition, corrosion products are produced in different types of environments. The lifespans of galvanized steels may vary depending on the use environment. Therefore, this study investigated the corrosion behavior of galvannealed steel under atmospheric corrosion in two locations in Korea, and the lifespan prediction of galvannealed steel in rural and coastal environments was conducted by means of the potentiostatic dissolution test and the chemical cyclic corrosion test.

Properties and durability of concrete with olive waste ash as a partial cement replacement

  • Tayeh, Bassam A.;Hadzima-Nyarko, Marijana;Zeyad, Abdullah M.;Al-Harazin, Samer Z.
    • Advances in concrete construction
    • /
    • v.11 no.1
    • /
    • pp.59-71
    • /
    • 2021
  • This research aims to study the utilization of olive waste ash (OWA) in the production of concrete as a partial substitute for cement. Effects of using OWA on the physical and mechanical properties of concrete mixtures have been investigated. This is done by carrying out tests involving the addition of various percentages of OWA to cement (0%, 5%, 10% and 15%). For each percentage, tests were performed on both fresh and hardened concrete; these included slump test, unit weight test and compressive strength test after 7, 28 and 90 days. Durability tests were investigated in solutions containing 5% NaOH and MgSO4 by weight of water. In addition, resistance to high temperatures was tested by subjecting the cubes to high temperatures of up to 170℃. The results of this research indicate that a higher percentage of OWA gives a lower compressive strength and lower workability but higher performance in terms of durability against both different weather conditions and high temperatures.

A Study on High Strength Concrete of Concrete Filled Steel Tube Column (CFT 기둥용 초고강도 충전콘크리트에 관한 연구)

  • Jung, Keun-Ho;Lim, Nam-Gi;Lee, Young-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.1
    • /
    • pp.127-132
    • /
    • 2004
  • CFT(Concrete Filled Steel Tube) is a structure of circular or squared of steel column filled with concrete. The steel tube holds the concrete inside and that makes this structure to perform superior features on stiffness, proof stress, transformation, fire resistance and construction itself. In this study, by over the 800kgf/$\textrm{cm}^2$ of high strength concrete for CFT column, research has been done on the basic property of matter such as fluidity, resistance on segregation, compressive strength, setting icons of the concrete filled in the steel tube under conditions of standard weather. Physical properties of concrete for CFT that Concrete with silica fume, fly ash of air entraining and high-range water reducing agent, that used to CFT column research purpose to find the most ideal composition, which is achieved by the investigation in the concrete's property of matter like ability of Slump, Slump Flow, Air content, Bleeding, and Settlement. For this study, experiments which are bused on obtained the result through physical test are practiced, with all of the experiment, specimens only for control are produced in each method of curing and analyzed to relations with core strength in mock-up test. In mock-up test, the research is studied compactability of concrete filled in tube and degree of hydration hysteresis, as a basic reference for applying to field of CFT column which is used over 800kgf/$\textrm{cm}^2$ high strength concrete.

Hull Form Improvement of a Tuna Longliner for the Northern Pacific Ocean (북양조업(北洋操業) 가다랭이 연승어선(延繩漁船)의 선형개량(船型改良)에 관한 실험적(實驗的) 연구(硏究))

  • Wu-Joan,Kim;Suak-Ho,Van;Young-Min,Park;Hyo-Chul,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.25 no.1
    • /
    • pp.47-55
    • /
    • 1988
  • One of tuna longliners which have excellent operational record at the tropical Pacifical Ocean was selected as a parent hull form for the development of a new ship which could be operate at the high latitude northern Pacific Ocean. The parent hull was modified to adapt operational and enviromental condition of such a weather and sea states. This modification was carried out based on design experiences and model test results in towing tank. In this report modification techniques applied to the hull form design of a tuna longliner are summarized. The powering performance of the developed hull form is evaluated to show 19%, decrease of resistance campared with the parent hull form.

  • PDF

The study on corrosion of the inner area of closed box-girder for unpainted weathering steel bridges (무도장 내후성 강 교량의 밀폐형 박스거더 내부의 부식에 대한 고찰)

  • Ma, Seung-Hwan;Noh, Young-Tai;Jang, Gun-Ik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2391-2400
    • /
    • 2015
  • Weather proof steels are used for steel bridges due to its high corrosion resistance under atmospheric conditions. However, instead of forming stabilized rust layers, general rust occurs on weather proof steels under high humidity condition close to seawater or shady places. In Japan, therefore, they perform rust stabilization treatment instead of unpainted treatment due to severe atmospheric conditions. However, most of domestic weather proof steels were constructed unpainted in the form of closed box-girder, which makes the periodical repetition of dry and wet hard to occur. For the steel bridges constructed on the Han river, the evaporation of water, dew condensation due to temperature change, and stagnant water due to rain affect harmfully on the formation of passive film on weather proof steels. Thus, in this research, in order to analyze corrosion properties inside the closed box-girder for the unpainted weather proof steel bridge in the waterworks safety zone, multiple ways of analysis such as observation with eyes, cellophane-tape test, steel thickness measurement, surface corrosion potential measurement, electron microscope analysis, and X-ray diffraction analysis of the rust were performed. As a result, unstable rust layer was observed inside the closed box-girder, and severe corrosion was observed on the top and bottom of the flanges due to the effects of stagnant water caused by rain, dew condensation, and de-icing materials.

Corrosion Behavior of Galvanized Steels with Outdoor Exposure Test in Korea for 36 Months (36개월간 국내 옥외폭로시험에 따른 아연도강의 부식거동)

  • Kim, K.T.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.231-241
    • /
    • 2018
  • Atmospheric corrosion is generally an electrochemical degradation process of metal. It can be caused by various corrosion factors of atmospheric component, weather, and air pollutants. Moisture, particles of sea salts, and sulfur dioxide are major factors in atmospheric corrosion. Galvanizing coating is one of the most efficient ways to protect iron from corrosion by zinc plating on the surface of the iron. Galvanized steels are being widely used in automobiles, building structures, roofing, and other industrial structures due to their high corrosion resistance compared to bare iron. Atmospheric corrosion of galvanized steel has shown complex corrosion behavior depending on coating process, coating thickness, atmospheric environment, and air pollutants. In addition, different types and kinds of corrosion products can be produced depending on the environment. Lifespan of galvanized steels is also affected by the environment. Therefore, the objective of this study was to determine the corrosion behavior of galvanized steel under atmospheric corrosion at six locations in Korea. When the exposure time was increased, content of zinc from GA surface decreased while contents of iron and oxygen tended to increase. On the other hand, content of iron was constant even after 36 months of exposure of GI.

Development of a New Flue - cured Tobacco Variety KFl13 by Nicotiana africana Method (Nicotiana africana 방법에 의한 황색종 연초 신품종 KF113 육성)

  • 정윤화;금완수;조명조;백기현;신승구;조수헌;진정의;이승철
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.16 no.1
    • /
    • pp.69-75
    • /
    • 1994
  • A new flue - cured tobacco variety KF113 was developed by Nicotiana africana method from a cross of NC82 and Coker 347 at the Suwon Experiment Station. It was tested in the 0fficial Variety Test in 1991-1992 and the flue - cured Regional Farm Test in 1992. KFl13 flowers 4 days later than WC82 (standard variety in Korea) and its harvestable leaves are 2 more than those of NC82. The leaf type and shape of KFl13 resembles Coker 347. It has high resistance to bacterial wilt (Pseudomonas solanacearum) and black shank (Phytophthora parasitica var. nicotianae), and is susceptible to tobacco mosaic virus. It should adapt well to the flue - cured production area and can reduce premature flowering under unfavorable weather conditions. Yield of KFl13 is 5% higher than that of NC82, and nearly equal in value per kg compare with NC82. This variety met acceptable standards for chemical and physical characteristics of cured leaf and for smoking taste evaluated by panel members in Korea Ginseng & Tobacco Research Institute.

  • PDF

Study on the Physical Properties and Characteristics of Adhesives for Woodcraft (목공예용 천연 및 합성 접착제의 특성 연구)

  • Kim, Seong Eun;Lee, Jin Kyung;Lee, Chae Hoon;Chung, Yong Jae
    • Journal of Conservation Science
    • /
    • v.35 no.6
    • /
    • pp.681-688
    • /
    • 2019
  • In this study, the characteristics of natural and synthetic adhesives used in woodcraft were evaluated. The pattern of deterioration of wood and adhesives according to changes in temperature and humidity were compared. For materials, one type of anlmal glue, three kinds of polyvinyl acetate adhesives, one type of epoxy adhesive and one type of zelkova wood were selected. Characteristics of physical and chemical characteristics, weather resistance and drying speed assessment were carried out. The adhesion characteristic evaluation showed that the adhesion strength of anlmal glue and one type of polyvinyl acetate adhesive were 6.54 N/㎟ and 7.01 N/㎟, pH meter of anlmal glue and polyvinyl acetate adhesives was pH 7.03 and pH 3.32-3.59 which were range of available as an adhesive. According to the test results of weather resistance, epoxy adhesives had the highest decreasing value in adhesion strength after deterioration. In the reversible test of the adhesive, it was found to be highly reversible in NaOH, a soluble solvent excluding epoxy, but attention is required when using the wood since it may show discoloration during processing.