본 논문은 기상 예보 및 목측 관측의 파랑 정보를 이용한 운항 선박의 최적 항로 평가 시스템 개발에 관한 내용을 다룬다. 예로부터 선장 및 항해사는 경험적으로 기상과 선박 상태를 고려하여 최적의 항로를 선택하여 항해하여 왔다. 이는 선장의 경험을 바탕으로 해류나 파랑에 대한 기상 예보 정보를 활용하여 최적항로를 결정하는 것으로 아직까지 선상에서 항로 결정을 보조해주는 디지털화한 시스템은 그 사례를 찾아보기 힘들다. 본 논문에서는 선박의 운항 효율성과 안전성 관점에서 구성되어져 있는 선상 최적 항로 평가 시스템을 소개한다. 효율적인 항해를 위해서는 도착예정시간 및 연료소모량을 최소로 하는 최적 항로를 구한다. 이는 선박의 파랑 중 부가저항에 기초를 둔 선속 저하 및 마력 증가를 고려하여 계산한다. 안전성 관점에서는 3D 판넬법에 기초를 둔 선박의 내항 계산을 본 시스템에서 구현하여 내항 평가를 수행한다. 기본적으로 기상 예보는 본 시스템을 구동하기 위해 우선적으로 준비되어져야만 한다.
In this work, we propose weather prediction models to estimate hourly outdoor temperatures and solar irradiance in the next day using forecasting information. Hourly weather data predicted by the proposed models are useful for setting system operating strategies for the next day. The outside temperature prediction model considers 3-hourly temperatures forecasted by Korea Meteorological Administration. Hourly data are obtained by a simple interpolation scheme. The solar irradiance prediction is achieved by constructing a dataset with the observed cloudiness and correspondent solar irradiance during the last two weeks and then by matching the forecasted cloud factor for the next day with the solar irradiance values in the dataset. To verify the usefulness of the weather prediction models in predicting a short-term building load, the predicted data are inputted to a TRNSYS building model, and results are compared with a reference case. Results show that the test case can meet the acceptance error level defined by the ASHRAE guideline showing 8.8% in CVRMSE in spite of some inaccurate predictions for hourly weather data.
Numerical air quality forecasting suffers from the large uncertainties of input data including emissions, boundary conditions, earth surface properties. Data assimilation has been widely used in the field of weather forecasting as a way to reduce the forecasting errors stemming from the uncertainties of input data. The present study aims at evaluating the effect of input data on the air quality forecasting results in Korea when data assimilation was invoked to generate the initial concentrations. The forecasting time was set to 36 hour and the emissions and initial conditions were chosen as tested input parameters. The air quality forecast model for Korea consisting of WRF and CMAQ was implemented for the test and the chosen test period ranged from November $2^{nd}$ to December $1^{st}$ of 2014. Halving the emission in China reduces the forecasted peak value of $PM_{10}$ and $SO_2$ in Seoul as much as 30% and 35% respectively due to the transport from China for the no-data assimilation case. As data assimilation was applied, halving the emissions in China has a negligible effect on air pollutant concentrations including $PM_{10}$ and $SO_2$ in Seoul. The emissions in Korea still maintain an effect on the forecasted air pollutant concentrations even after the data assimilation is applied. These emission sensitivity tests along with the initial condition sensitivity tests demonstrated that initial concentrations generated by data assimilation using field observation may minimize propagation of errors due to emission uncertainties in China. And the initial concentrations in China is more important than those in Korea for long-range transported air pollutants such as $PM_{10}$ and $SO_2$. And accurate estimation of the emissions in Korea are still necessary for further improvement of air quality forecasting in Korea even after the data assimilation is applied.
In this study, climate variability was predicted by the Weather Research and Forecasting (WRF) model under two different scenarios (current trends scenario; SC1 and managed scenario; SC2) for future urban growth over the Seoul metropolitan area (SMA). We used the urban growth model, SLEUTH (Slope, Land-use, Excluded, Urban, Transportation, Hill-Shade) to predict the future urban growth in SMA. As a result, the difference of urban ratio between two scenarios was the maximum up to 2.2% during 50 years (2000~2050). Also, the results of SLEUTH like this were adjusted in the Weather Research and Forecasting (WRF) model to analysis the difference of the future climate for the future urbanization effect. By scenarios of urban growth, we knew that the significant differences of surface temperature with a maximum of about 4 K and PBL height with a maximum of about 200 m appeared locally in newly urbanized area. However, wind speeds are not sensitive for the future urban growth in SMA. These results show that we need to consider the future land-use changes or future urban extension in the study for the prediction of future climate changes.
해양사고 예보 시스템(MCFS)은 해양사고의 예측건수와 위험수준을 일기예보와 같이 방송하기 위한 것이다. MCFS는 해양사고 수량화 D/B, 예측 모델, 3차원 통계 가시화 시스템 등으로 구성되어 있다. 이 논문에서는 수량화 D/B의 구현 절차를 기술했다. 해양사고 데이터는 1990년부터 2000년까지 11년간 위도 33$^{\circ}$N~35$^{\circ}$N와 경도124$^{\circ}$E~127$^{\circ}$E의 대한민국 서남해안 일대에서 발생한 총 724건을 수집하였다. 수량화 D/B의 분석방법을 제안하고 그 유효성을 검토하였다.
미기상해석모듈(microscale weather analysis module)은 복사에너지, 열, 습도 등의 순환을 시-공간적으로 세밀하게 설명하고 모의실험 할 수 있도록 개발한 초고분해능($1km{\times}1km$ 이내)의 기상모델이다. 본 논문은 미기상해석모듈의 정확성을 시공간적으로 검증할 수 있도록 고안한 객체기반 검증법을 제안한다. 이 검증법은 통계그래픽을 사용하는 시각적인 방법이며, 미기상해석모듈의 평가통계출력장 구축단계, 객체식별 및 병합단계, 모듈의 정확성 검증단계로 이루진다. 이를 위해 두 가지 통계를 사용하여 삼차원의 평가통계출력장을 구축하였고, 구축된 출력장에서 정의되는 시계열통계들에 대해 합성(convolution), 가면화(masking) 및 병합작업(merging)을 시행하여 출력장에서 모듈검증대상 지역인 객체를 식별하는 알고리즘을 개발하였다. 또한, 사례연구를 통해 제안된 객체기반 검증법의 유용성을 보였다.
This study investigates the impact of cumulus parameterization scheme (CPS) with different horizontal grid sizes on the simulation of the local heavy rainfall case over the Korean Peninsula. The Weather Research and Forecasting (WRF)-based real-time forecast system of the Joint Center for High-impact Weather and Climate Research (JHWC) is used. Three CPSs are used for sensitivity experiments: the BMJ (Betts-Miller-Janjic), GD (Grell-Devenyi ensemble), and KF (Kain-Fritsch) CPSs. The heavy rainfall case selected in this study is characterized by low-level jet and low-level transport of warm and moist air. In 27-km simulations (DM1), simulated precipitation is overestimated in the experiment with BMJ scheme, and it is underestimated with GD scheme. The experiment with KF scheme shows well-developed precipitation cells in the southern and the central region of the Korean Peninsula, which are similar to the observations. All schemes show wet bias and cold bias in the lower troposphere. The simulated rainfall in 27-km horizontal resolution has influence on rainfall forecast in 9-km horizontal resolution, so the statements on 27-km horizontal resolution can be applied to 9-km horizontal resolution. In the sensitivity experiments of CPS for DM3 (3-km resolution), the experiment with BMJ scheme shows better heavy rainfall forecast than the other experiments. The experiments with CPS in 3-km horizontal resolution improve rainfall forecasts compared to the experiments without CPS, especially in rainfall distribution. The experiments with CPS show lower LCL(Lifted Condensation Level) than those without CPS at the maximum rainfall point, and weaker vertical velocity is simulated in the experiments with CPS compared to the experiments without CPS. It means that CPS suppresses convective instability and influences mainly convective rainfall. Consequently, heavy rainfall simulation with BMJ CPS is better than the other CPSs, and even in 3-km horizontal resolution, CPS should be applied to control convective instability. This conclusion can be generalized by conducting more experiments for a variety of cases over the Korean Peninsula.
시 공간 분해능이 우수한 GPS 가강수량 자료를 활용하면 강수나 구름과 같이 변동성이 큰 기상현상에 대한 수치예보모델의 예측성 한계를 줄일 수 있다. 이 연구에서는 GPS 가강수량 자료를 수치 예보모델에 초기치로서 적용하기 위해 한국천문연구원과 해양수산부가 운영하고 있는 GPS 상시관측소 자료로부터 GPS 가강수량을 계산하였다. 시 공간적 규모가 작아 기존 수치예보모델에서 예측하기 어려운 국지적 집중호우사례를 선정하였다. 차세대 수치예보모델인 WRF(Weather Research & Forecasting)모델의 3차원 변분동화(3D-Var)기법을 이용하여 GPS 가강수량 자료를 초기치에 동화하였다. 이 연구는 GPS 가강수량 자료가 수치예보모델의 결과에 미치는 영향을 분석하였다. 분석결과를 바탕으로 하여 수치예보모델의 예측성 향상을 위한 연구방향을 제시 하였다.
Forecasting of electricity demand have difficulty in adapting to abrupt weather changes along with a radical shift in major regional and global climates. This has lead to increasing attention to research on the immediate and accurate forecasting model. Technically, this implies that a model requires only a few input variables all of which are easily obtainable, and its predictive performance is comparable with other competing models. To meet the ends, this paper presents an energy demand forecasting model that uses the variable selection or extraction methods of data mining to select only relevant input variables, and employs support vector regression method for accurate prediction. Also, it proposes a novel performance measure for time-series prediction, shift index, followed by description on preprocessing procedure. A comparative evaluation of the proposed method with other representative data mining models such as an auto-regression model, an artificial neural network model, an ordinary support vector regression model was carried out for obtaining the forecast of monthly electricity demand from 2000 to 2008 based on data provided by Korea Energy Economics Institute. Among the models tested, the proposed method was shown promising results than others.
초단기 홍수예보를 위한 주요자료로서 최근 기상레이더의 중요성이 크게 부각되고 있다. 기상레이더는 넓은 지역에 걸쳐 실시간으로 강우현상 감시가 가능하며 지상우량계로는 파악이 불가능한 미계측유역을 통과하는 강우장의 이동 및 변화 파악이 가능한 장점이 있다. 본 연구는 강우장의 공간적 분포와 레이더 강우세포를 추적하는 강우장 예측 해석방안을 수립하였다. 이를 위해 강우장의 공간적인 이동을 고려하기 위해 강우장의 바람장 이류(advection) 패턴을 추출하여 각 강우세포가 가지는 이동방향 및 속도를 고려한 강우장 추적기법을 통하여 강우장을 예측하였다. 본 연구를 통하여 개발된 기상레이더 강우장 상관분석 기법을 활용한 초단기강우예측 결과는 집중호우시 홍수 예 경보를 위한 수문모형의 입력자료로 활용이 가능할 것으로 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.