• Title/Summary/Keyword: Weather radar data

Search Result 227, Processing Time 0.042 seconds

Study about Road-Surrounding Environment Analysis and Monitoring Platform based on Multiple Vehicle Sensors (다중 차량센서 기반 도로주변환경 분석 및 모니터링 플랫폼 연구)

  • Jang, Bong-Joo;Lim, Sanghun;Kim, Hyunjung
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1505-1515
    • /
    • 2016
  • The age of autonomous vehicles has come according to development of high performance sensing and artificial intelligence technologies. And importance of the vehicle's surrounding environment sensing and observation is increasing accordingly because of its stability and control efficiency. In this paper we propose an integrated platform for efficient networking, analysis and monitoring of multiple sensing data on the vehicle that are equiped with various automotive sensors such as GPS, weather radar, automotive radar, temperature and humidity sensors. From simulation results, we could see that the proposed platform could perform realtime analysis and monitoring of various sensing data that were observed from the vehicle sensors. And we expect that our system can support drivers or autonomous vehicles to recognize optimally various sudden or danger driving environments on the road.

A Complex Valued ResNet Network Based Object Detection Algorithm in SAR Images (복소수 ResNet 네트워크 기반의 SAR 영상 물체 인식 알고리즘)

  • Hwang, Insu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.392-400
    • /
    • 2021
  • Unlike optical equipment, SAR(Synthetic Aperture Radar) has the advantage of obtaining images in all weather, and object detection in SAR images is an important issue. Generally, deep learning-based object detection was mainly performed in real-valued network using only amplitude of SAR image. Since the SAR image is complex data consist of amplitude and phase data, a complex-valued network is required. In this paper, a complex-valued ResNet network is proposed. SAR image object detection was performed by combining the ROI transformer detector specialized for aerial image detection and the proposed complex-valued ResNet. It was confirmed that higher accuracy was obtained in complex-valued network than in existing real-valued network.

Spatial-Temporal Interpolation of Rainfall Using Rain Gauge and Radar (강우계와 레이더를 이용한 강우의 시공간적인 활용)

  • Hong, Seung-Jin;Kim, Byung-Sik;Hahm, Chang-Hahk
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.3
    • /
    • pp.37-48
    • /
    • 2010
  • The purpose of this paper is to evaluate how the rainfall field effect on a runoff simulation using grid radar rainfall data and ground gauge rainfall. The Gwangdeoksan radar and ground-gauge rainfall data were used to estimate a spatial rainfall field, and a hydrologic model was used to evaluate whether the rainfall fields created by each method reproduced a realistically valid spatial and temporal distribution. Pilot basin in this paper was the Naerin stream located in Inje-gun, Gangwondo, 250m grid scale digital elevation data, land cover maps, and soil maps were used to estimate geological parameters for the hydrologic model. For the rainfall input data, quantitative precipitation estimation(QPE), adjusted radar rainfall, and gauge rainfall was used, and then compared with the observed runoff by inputting it into a $Vflo^{TM}$ model. As a result of the simulation, the quantitative precipitation estimation and the ground rainfall were underestimated when compared to the observed runoff, while the adjusted radar rainfall showed a similar runoff simulation with the actual observed runoff. From these results, we suggested that when weather radars and ground rainfall data are combined, they have a greater hydrological usability as input data for a hydrological model than when just radar rainfall or ground rainfall is used separately.

Development of Simulation Method of Doppler Power Spectrum and Raw Time Series Signal Using Average Moments of Radar Wind Profiler (윈드프로파일러의 평균모멘트 값을 이용한 도플러 파워 스펙트럼 및 시계열 원시신호 시뮬레이션기법 개발)

  • Lee, Sang-Yun;Lee, Gyu-Won
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1037-1044
    • /
    • 2020
  • Since radar wind profiler (RWP) provides wind field data with high time and space resolution in all weather conditions, their verification of the accuracy and quality is essential. The simultaneous wind measurement from rawinsonde is commonly used to evaluate wind vectors from RWP. In this study, the simulation algorithm which produces the spectrum and raw time series (I/Q) data from the average values of moments is presented as a step-by-step verification method for the signal processing algorithm. The possibility of the simulation algorithm was also confirmed through comparison with the raw data of LAP-3000. The Doppler power spectrum was generated by assuming the density function of the skew-normal distribution and by using the moment values as the parameter. The simulated spectrum was generated through random numbers. In addition, the coherent averaged I/Q data was generated by random phase and inverse discrete Fourier transform, and raw I/Q data was generated through the Dirichlet distribution.

Comparison of Cloud Top Height Observed by a Ka-band Cloud Radar and COMS (Ka-band 구름레이더와 천리안위성으로 관측된 운정고도 비교)

  • Oh, Su-Bin;Won, Hye Young;Ha, Jong-Chul;Chung, Kwan-Young
    • Atmosphere
    • /
    • v.24 no.1
    • /
    • pp.39-48
    • /
    • 2014
  • This study provides a comparative analysis of cloud top heights observed by a Ka-band cloud radar and the Communication, Ocean and Meteorological Satellite (COMS) at Boseong National Center for Intensive Observation of severe weather (NCIO) from May 25, 2013 (1600 UTC) to May 27. The rainfall duration is defined as the period of rainfall from start to finish, and the no rainfall duration is defined as the period other than the rainfall duration. As a result of the comparative analysis, the cloud top heights observed by the cloud radar have been estimated to be lower than that observed by the COMS for the rainfall duration due to the signal attenuation caused by raindrops. The stronger rainfall intensity gets, the more the difference grows. On the other hand, the cloud top heights observed by the cloud radar have been relatively similar to that observed by the COMS for the no rainfall duration. In this case, the cloud radar can effectively detect cloud top heights within the range of its observation. The COMS indicates the cloud top heights lower than the actual ones due to the upper thin clouds under the influence of ground surface temperature. As a result, the cloud radar can be useful in detecting cloud top heights when there are no precipitation events. The COMS data can be used to correct the cloud top heights when the radar gets beyond the valid range of observation or there are precipitation events.

Design of Optimized Type-2 Fuzzy RBFNN Echo Pattern Classifier Using Meterological Radar Data (기상레이더를 이용한 최적화된 Type-2 퍼지 RBFNN 에코 패턴분류기 설계)

  • Song, Chan-Seok;Lee, Seung-Chul;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.6
    • /
    • pp.922-934
    • /
    • 2015
  • In this paper, The classification between precipitation echo(PRE) and non-precipitation echo(N-PRE) (including ground echo and clear echo) is carried out from weather radar data using neuro-fuzzy algorithm. In order to classify between PRE and N-PRE, Input variables are built up through characteristic analysis of radar data. First, the event classifier as the first classification step is designed to classify precipitation event and non-precipitation event using input variables of RBFNNs such as DZ, DZ of Frequency(DZ_FR), SDZ, SDZ of Frequency(SDZ_FR), VGZ, VGZ of Frequency(VGZ_FR). After the event classification, in the precipitation event including non-precipitation echo, the non-precipitation echo is completely removed by the echo classifier of the second classifier step that is built as Type-2 FCM based RBFNNs. Also, parameters of classification system are acquired for effective performance using PSO(Particle Swarm Optimization). The performance results of the proposed echo classifier are compared with CZ. In the sequel, the proposed model architectures which use event classifier as well as the echo classifier of Interval Type-2 FCM based RBFNN show the superiority of output performance when compared with the conventional echo classifier based on RBFNN.

Design of Meteorological Radar Echo Classifier Using Fuzzy Relation-based Neural Networks : A Comparative Studies of Echo Judgement Modules (FNN 기반 신경회로망을 이용한 기상 레이더 에코 분류기 설계 : 에코판단 모듈의 비교 분석)

  • Ko, Jun-Hyun;Song, Chan-Seok;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.562-568
    • /
    • 2014
  • There exist precipitation echo and non-precipitation echo in the meteorological radar. It is difficult to effectively issue the right weather forecast because of a difficulty in determining these ambiguous point. In this study, Data is extracted from UF data of meteorological radar used. Input and output data for designing two classifier were built up through the analysis of the characteristics of precipitation and non-precipitation. Selected input variables are considered for better performance and echo classifier is designed using fuzzy relation-based nueral network. Comparative studies on the performance of echo classifier are carried out by considering both echo judgement module 1 and module 2.

Analysis and Detection Method for Line-shaped Echoes using Support Vector Machine (Support Vector Machine을 이용한 선에코 특성 분석 및 탐지 방법)

  • Lee, Hansoo;Kim, Eun Kyeong;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.6
    • /
    • pp.665-670
    • /
    • 2014
  • A SVM is a kind of binary classifier in order to find optimal hyperplane which separates training data into two groups. Due to its remarkable performance, the SVM is applied in various fields such as inductive inference, binary classification or making predictions. Also it is a representative black box model; there are plenty of actively discussed researches about analyzing trained SVM classifier. This paper conducts a study on a method that is automatically detecting the line-shaped echoes, sun strobe echo and radial interference echo, using the SVM algorithm because the line-shaped echoes appear relatively often and disturb weather forecasting process. Using a spatial clustering method and corrected reflectivity data in the weather radar, the training data is made up with mean reflectivity, size, appearance, centroid altitude and so forth. With actual occurrence cases of the line-shaped echoes, the trained SVM classifier is verified, and analyzed its characteristics using the decision tree method.

The Impact of Data Assimilation on WRF Simulation using Surface Data and Radar Data: Case Study (지상관측자료와 레이더 자료를 이용한 자료동화가 수치모의에 미치는 영향: 사례 연구)

  • Choi, Won;Lee, Jae Gyoo;Kim, Yu-Jin
    • Atmosphere
    • /
    • v.23 no.2
    • /
    • pp.143-160
    • /
    • 2013
  • The effect of 3DVAR (Three Dimension Variational data Assimilation) was examined by comparing observation and the simulations of CNTL (to which data assimilation was not applied) and ALL (to which data assimilation was applied using ground observation data and radar data) for the case of a heavy snowfall event (case A) of 11-12 February 2011 in the Yeongdong region. In case A, heavy snow intensively came in the Yeongdong coastal region rather than Daegwallyeong, in particular, around the Gangneung and Donghae regions with total precipitation in Bukgangneung at approximately 91 mm according to the AWS observation. It can be seen that compared to CNTL, ALL simulated larger precipitation along the Yeongdong coastline extending from Sokcho to Donghae while simulating smaller precipitation for inland areas including Daegwallyeong. On comparison of the total accumulated precipitations from simulations of CNTL and ALL, and the observed total accumulated precipitation, the positive effect of the assimilation of ground observation data and radar data could be identified in Bukgangneung and Donghae, on the other hand, the negative effect of the assimilation could be identified in the Daegwallyeong and Sokcho regions. In order to examine the average accuracy of precipitation prediction by CNTL and ALL for the entire Gangwon region including the major points mentioned earlier, the three hour accumulated precipitation from simulations of CNTL and ALL were divided into 5, 10, 15, 20, 25 and 30 mm/3hr and threat Scores were calculated by forecasting time. ALL showed relatively higher TSs than CNTL for all threshold values although there were some differences. That is, when considered generally based on the Gangwon region, the accuracy of precipitation prediction from ALL was improved somewhat compared to that from CNTL.

Assessment of variability and uncertainty in bias correction parameters for radar rainfall estimates based on topographical characteristics (지형학적 특성을 고려한 레이더 강수량 편의보정 매개변수의 변동성 및 불확실성 분석)

  • Kim, Tae-Jeong;Ban, Woo-Sik;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.9
    • /
    • pp.589-601
    • /
    • 2019
  • Various applications of radar rainfall data have been actively employed in the field of hydro-meteorology. Since radar rainfall is estimated by using predefined reflectivity-rainfall intensity relationships, they may not have sufficient reproducibility of observations. In this study, a generalized linear model is introduced to better capture the Z-R relationship in the context of bias correction within a Bayesian regression framework. The bias-corrected radar rainfall with the generalized linear model is more accurate than the widely used mean field bias correction method. In addition, we analyzed variability of the bias correction parameters under various geomorphological conditions such as the height of the weather station and the separation distance from the radar. The identified relationship is finally used to derive a regionalized formula which can provide bias correction factors over the entire watershed. It can be concluded that the bias correction parameters and regionalized method obtained from this study could be useful in the field of radar hydrology.