• 제목/요약/키워드: Weather forecasts

검색결과 209건 처리시간 0.022초

Research on the Application of VR Technology in Meteorological Simulation

  • Lu, Kai;Cho, Dong Min
    • 한국멀티미디어학회논문지
    • /
    • 제24권10호
    • /
    • pp.1435-1448
    • /
    • 2021
  • Recent years, due to the direct or indirect damages caused by meteorological disasters more and more attention have been paid to natural disasters. At same time, diversified and multi-sensory interactive meteorological services is increasingly demanded. In this study, novel interactive meteorological service was compared with the traditional communication methods. Combining with case studies and systems creation, a virtual reality weather simulation framework was proposed, and a realistic virtual game environment providing real-time and historical weather information was created. The primary goal of this study is to build a weather display cabinet game system by using virtual reality technology, and promoting public's understanding of the principles of weather changes. With the interactive games in realistic scenarios, public's awareness for disasters prevention could be promoted. It is helping to change public's traditional understanding of meteorological theories, and will provide a more convenient way for the public to explore more effective weather forecasts. The simulation system is supported by VR technology. It was combined with Leap Motion interactive equipment to make popularization games for weather science. T-test data analysis showed that the application of VR technology in weather games has strong operability and interactivity.

범용 라디오 수신장비를 활용한 라디오존데 관측 (Radiosonde Observation Using General Purpose Radio Receiving Instruments)

  • 강현규;김주완;박민성;안상현
    • 대기
    • /
    • 제34권3호
    • /
    • pp.325-336
    • /
    • 2024
  • Radiosonde is an important in-situ profiling instrument that measures atmospheric temperature, moisture, and wind structure from the surface to the middle stratosphere. The operational radiosonde measurements are carried out more than twice (at 0000 UTC and 1200 UTC) daily at approximately 1,300 World Meteorological Organization (WMO) stations and play a pivotal role in daily weather forecasts. It also contributes to the monitoring of atmospheric structure by providing the key physical information like temperature and pressure, forming the backbone of atmospheric (re)analyses and numerical weather forecasts. Additionally, high-resolution radiosonde profiles are used for calibration and evaluation of satellite products. Despite these advantages, radiosonde measurements are mostly limited to operational uses due to the high initial cost of ground instrument setup required for data transmission and reception. This study outlines a cost-effective (roughly one-tenth of the operational cost) method for establishing the ground station and the necessary radiosonde measurement procedures, offering guidance for individual researchers or university-level instructors.

단기 강우예측 정보를 이용한 도시하천 유출모의 적용 (Application of Urban Stream Discharge Simulation Using Short-term Rainfall Forecast)

  • 양유빈;임창묵;윤선권
    • 한국농공학회논문집
    • /
    • 제59권2호
    • /
    • pp.69-79
    • /
    • 2017
  • In this study, we developed real-time urban stream discharge forecasting model using short-term rainfall forecasts data simulated by a regional climate model (RCM). The National Centers for Environmental Prediction (NCEP) Climate Forecasting System (CFS) data was used as a boundary condition for the RCM, namely the Global/Regional Integrated Model System(GRIMs)-Regional Model Program (RMP). In addition, we make ensemble (ESB) forecast with different lead time from 1-day to 3-day and its accuracy was validated through temporal correlation coefficient (TCC). The simulated rainfall is compared to observed data, which are automatic weather stations (AWS) data and Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA 3B43; 3 hourly rainfall with $0.25^{\circ}{\times}0.25^{\circ}$ resolution) data over midland of Korea in July 26-29, 2011. Moreover, we evaluated urban rainfall-runoff relationship using Storm Water Management Model (SWMM). Several statistical measures (e.g., percent error of peak, precent error of volume, and time of peak) are used to validate the rainfall-runoff model's performance. The correlation coefficient (CC) and the Nash-Sutcliffe efficiency (NSE) are evaluated. The result shows that the high correlation was lead time (LT) 33-hour, LT 27-hour, and ESB forecasts, and the NSE shows positive values in LT 33-hour, and ESB forecasts. Through this study, it can be expected to utilizing the real-time urban flood alert using short-term weather forecast.

한-일 단기 수치예보자료를 이용한 강우 및 홍수 예측 성능 비교 (Performance comparison of rainfall and flood forecasts using short-term numerical weather prediction data from Korea and Japan)

  • 유완식;윤성심;최미경;정관수
    • 한국수자원학회논문집
    • /
    • 제50권8호
    • /
    • pp.537-549
    • /
    • 2017
  • 본 연구에서는 기상청에서 제공하는 국지예보모델(LDAPS)과 일본 기상청의 중규모모델(Meso-Scale Model, MSM)을 이용하여 태풍 및 정체전선 등 3개의 강우사상과 남강댐 유역 내 산청 유역에 대해 강우 및 홍수 예측 정확도를 평가하고 비교 검토하였다. 강우예측 정확도 평가 결과, LDAPS와 MSM 모두 태풍 사상과 같은 광역적인 예측에 대해서는 예측 정확도가 높은 것으로 나타났으나, 정체전선과 같이 국지적으로 발생하는 강우사상의 경우 예측 오차가 많이 발생하는 것으로 나타났다. 홍수예측 정확도 평가 결과, 선행시간이 증가함에 따라 점점 예측 정확도가 향상되는 것을 확인할 수 있었으며, LDAPS와 MSM 모두 기상 및 수자원간의 연계를 통하여 강우 및 홍수 예측 분야에서의 활용 가능성을 확인할 수 있었다.

TIGGE/S2S 기반 중장기 토양수분 예측 및 검증 (Verification of Mid-/Long-term Forecasted Soil Moisture Dynamics Using TIGGE/S2S)

  • 신용희;정임국;이현주;신용철
    • 한국농공학회논문집
    • /
    • 제61권1호
    • /
    • pp.1-8
    • /
    • 2019
  • Developing reliable soil moisture prediction techniques at agricultural regions is a pivotal issue for sustaining stable crop productions. In this study, a physically-based SWAP(Soil-Water-Atmosphere-Plant) model was suggested to estimate soil moisture dynamics at the study sites. ROSETTA was also integrated to derive the soil hydraulic properties(${\alpha}$, n, ${\Theta}_r$, ${\Theta}_s$, $K_s$) as the input variables to SWAP based on the soil information(Sand, Silt and Clay-SSC, %). In order to predict the soil moisture dynamics in future, the mid-term TIGGIE(THORPEX Interactive Grand Global Ensemble) and long-term S2S(Subseasonal to Seasonal) weather forecasts were used, respectively. Our proposed approach was tested at the six study sites of RDA(Rural Development Administration). The estimated soil moisture values based on the SWAP model matched the measured data with the statistics of Root Mean Square Error(RMSE: 0.034~0.069) and Temporal Correlation Coefficient(TCC: 0.735~0.869) for validation. When we predicted the mid-/long-term soil moisture values using the TIGGE(0~15 days)/S2S(16~46 days) weather forecasts, the soil moisture estimates showed less variations during the TIGGE period while uncertainties were increased for the S2S period. Although uncertainties were relatively increased based on the increased leading time of S2S compared to those of TIGGE, these results supported the potential use of TIGGE/S2S forecasts in evaluating agricultural drought. Our proposed approach can be useful for efficient water resources management plans in hydrology, agriculture, etc.

K-평균 군집분석을 이용한 동아시아 지역 날씨유형 분류 (Classification of Weather Patterns in the East Asia Region using the K-means Clustering Analysis)

  • 조영준;이현철;임병환;김승범
    • 대기
    • /
    • 제29권4호
    • /
    • pp.451-461
    • /
    • 2019
  • Medium-range forecast is highly dependent on ensemble forecast data. However, operational weather forecasters have not enough time to digest all of detailed features revealed in ensemble forecast data. To utilize the ensemble data effectively in medium-range forecasting, representative weather patterns in East Asia in this study are defined. The k-means clustering analysis is applied for the objectivity of weather patterns. Input data used daily Mean Sea Level Pressure (MSLP) anomaly of the ECMWF ReAnalysis-Interim (ERA-Interim) during 1981~2010 (30 years) provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). Using the Explained Variance (EV), the optimal study area is defined by 20~60°N, 100~150°E. The number of clusters defined by Explained Cluster Variance (ECV) is thirty (k = 30). 30 representative weather patterns with their frequencies are summarized. Weather pattern #1 occurred all seasons, but it was about 56% in summer (June~September). The relatively rare occurrence of weather pattern (#30) occurred mainly in winter. Additionally, we investigate the relationship between weather patterns and extreme weather events such as heat wave, cold wave, and heavy rainfall as well as snowfall. The weather patterns associated with heavy rainfall exceeding 110 mm day-1 were #1, #4, and #9 with days (%) of more than 10%. Heavy snowfall events exceeding 24 cm day-1 mainly occurred in weather pattern #28 (4%) and #29 (6%). High and low temperature events (> 34℃ and < -14℃) were associated with weather pattern #1~4 (14~18%) and #28~29 (27~29%), respectively. These results suggest that the classification of various weather patterns will be used as a reference for grouping all ensemble forecast data, which will be useful for the scenario-based medium-range ensemble forecast in the future.

Very Short-Term Wind Power Ensemble Forecasting without Numerical Weather Prediction through the Predictor Design

  • Lee, Duehee;Park, Yong-Gi;Park, Jong-Bae;Roh, Jae Hyung
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권6호
    • /
    • pp.2177-2186
    • /
    • 2017
  • The goal of this paper is to provide the specific forecasting steps and to explain how to design the forecasting architecture and training data sets to forecast very short-term wind power when the numerical weather prediction (NWP) is unavailable, and when the sampling periods of the wind power and training data are different. We forecast the very short-term wind power every 15 minutes starting two hours after receiving the most recent measurements up to 40 hours for a total of 38 hours, without using the NWP data but using the historical weather data. Generally, the NWP works as a predictor and can be converted to wind power forecasts through machine learning-based forecasting algorithms. Without the NWP, we can still build the predictor by shifting the historical weather data and apply the machine learning-based algorithms to the shifted weather data. In this process, the sampling intervals of the weather and wind power data are unified. To verify our approaches, we participated in the 2017 wind power forecasting competition held by the European Energy Market conference and ranked sixth. We have shown that the wind power can be accurately forecasted through the data shifting although the NWP is unavailable.

FLASH FLOOD FORECASTING USING REMOTELY SENSED INFORMATION AND NEURAL NETWORKS PART II : MODEL APPLICATION

  • Kim, Gwang-seob;Lee, Jong-Seok
    • Water Engineering Research
    • /
    • 제3권2호
    • /
    • pp.123-134
    • /
    • 2002
  • A developed Quantitative Flood Forecasting (QFF) model was applied to the mid-Atlantic region of the United States. The model incorporated the evolving structure and frequency of intense weather systems of the study area for improved flood forecasting. Besides using radiosonde and rainfall data, the model also used the satellite-derived characteristics of storm systems such as tropical cyclones, mesoscale convective complex systems and convective cloud clusters associated with synoptic atmospheric conditions as Input. Here, we present results from the application of the Quantitative Flood Forecasting (QFF) model in 2 small watersheds along the leeward side of the Appalachian Mountains in the mid-Atlantic region. Threat scores consistently above 0.6 and close to 0.8 ∼ 0.9 were obtained fur 18 hour lead-time forecasts, and skill scores of at least 40% and up to 55 % were obtained.

  • PDF

공간기후모형을 이용한 농업기상정보 생산 (Visualization of Local Climates Based on Geospatial Climatology)

  • 윤진일
    • 한국농림기상학회지
    • /
    • 제6권4호
    • /
    • pp.272-289
    • /
    • 2004
  • The spatial resolution of local weather and climate information for agronomic practices exceeds the current weather service scale. To supplement the insufficient spatial resolution of official forecasts and observations, gridded climate data are frequently generated. Most ecological models can be run using gridded climate data to produce ecosystem responses at landscape scales. In this lecture, state of the art techniques derived from geospatial climatology, which can generate gridded climate data by spatially interpolating point observations at synoptic weather stations, will be introduced. Removal of the urban effects embedded in the interpolated surfaces of daily minimum temperature, incorporation of local geographic potential for cold air accumulation into the minimum temperature interpolation scheme, and solar irradiance correction for daytime hourly temperature estimation are presented. Some experiences obtained from their application to real landscapes will be described.

Application of Vertical Grid-nesting to the Tropical Cyclone Track and Intensity Forecast

  • Kim, Hyeon-Ju;Cheong, Hyeong-Bin;Lee, Chung-Hui
    • 한국지구과학회지
    • /
    • 제40권4호
    • /
    • pp.382-391
    • /
    • 2019
  • The impact of vertical grid-nesting on the tropical cyclone intensity and track forecast was investigated using the Weather Research and Forecast (WRF) version 3.8 and the initialization method of the Structure Adjustable Balanced Bogus Vortex (SABV). For a better resolution in the central part of the numerical domain, where the tropical cyclone of interest is located, a horizontal and vertical nesting technique was employed. Simulations of the tropical cyclone Sanba (16th in 2012) indicated that the vertical nesting had a weak impact on the cyclone intensity and little impact on the track forecast. Further experiments revealed that the performance of forecast was quite sensitive to the horizontal resolution, which is in agreement with previous studies. The improvement is due to the fact that horizontal resolution can improve forecasts not only on the tropical cyclone-scale but also for large-scale disturbances.