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Abstract: A developed Quantitative Flood Forecasting (QFF) model was applied to the mid-Atlantic
region of the United States. The model incorporated the evolving structure and frequency of intense
weather systems of the study area for improved flood forecasting. Besides using radiosonde and rain-
fall data, the model also used the satellite-derived characteristics of storm systems such as tropical
cyclones, mesoscale convective complex systems and convective cloud clusters associated with syn-
optic atmospheric conditions as input. Here, we present results from the application of the Quantita-
tive Flood Forecasting (QFF) model in 2 small watersheds along the leeward side of the Appalachian
Mountains in the mid-Atlantic region. Threat scores consistently above 0.6 and close to 0.8 ~ 0.9 were
obtained for 18 hour lead-time forecasts, and skill scores of at least 40 % and up to 55 % were ob-
tained.
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L. INTRODUCTION between the warm (May through September)
and cold (October through April) seasons. In

Along the Allegheny Front, in the mid- At-
lantic region of the U.S. (Fig. 1), the hydrocli-
matology of floods is characterized by the re-
currence of floods in small to medium water-
sheds. Such watersheds have a short response
time for flooding, and are typically located in
regions of complex orography, with narrow
valleys and relatively strong relief. In this re-
gion, the character of the meteorological sce-
narios leading to severe flooding events differs

the cold season, floods result from intense
and/or lengthy rainfall on dense snowpacks or
frozen ground. Here we focus on the winter-
time storms that are generally associated with
Pacific, Gulf and subtropical Atlantic mois-
ture-rich airmasses. Often these watersheds are
instrumented with streamflow gauges, but not
with raingauges. At these locations, orographic
effects on storm duration and intensity lead to
the occurrence of heavy rainfall. These water-
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sheds are connected through a dense network
of lst and 2nd order streams, which quickly
deliver runoff from headwater catchments to
the river valley downstream. When large
storms impinge upon this region, the combined
contribution of streamflow from these small
basins to the main stem of the Susquehanna
River leads to extreme floods (Barros and Ku-
ligowski, 1998). Thus, the benefit of improv-
ing flood forecasting for such small basins is
key to improve flood forecasting in the entire
Susquehanna River basin.

To improve forecasting technique, we ado-
pted an artificial neural network approach in
this study. Previous studies have demonstrated
that neural networks are appropriate to capture
the complex nonlinear rainfall-runoff relation-
ships (Hsu et al., 1995; Minns and Hall, 1996;
Shamseldin, 1997; Campolo et al., 1999). The
practical advantages and limitations of neural
networks in forecast applications have been
discussed by Maier and Dandy (1996) and
Kuligowski and Barros (1998a,b) among
others, while Hassibi et. al. (1994, 1995) dem-
onstrated theoretically why neural networks
are robust estimators of nonlinear phenomena.
Also, neural networks have been applied to a
wide variety of hydrologic problems such as
precipitation forecasting (Kuligowski and
Barros, 1998a,b; Hall et al., 1999); streamflow
prediction (Imrie et al., 2000); and prediction
of water quality parameters (Maier and Dandy,
1996) among others.

In this paper, we present results of applica-
tion of the Quantitative Flood Forecasting
(QFF) model which was developed to forecast
peak streamflow in small size watersheds up to
18 hours in advance (Kim, submitted). The
model consists of using neural networks as a

data-transforming tool combining information
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from the state of the atmosphere and its recent
evolution along with standard hydrometeo-
rological data to issue streamflow forecasts.
The structure of the model is dictated by our
understanding of the regional hydrometeorol-
ogy, flood hydrology and by an empirically
derived classification that establishes relation-
ships among data from different types of sen-
sors: streamflow and rain gauges, radiosondes,
and satellite imagery. Next , a description of
the data used is provided in Section 2, which 1s
followed by a brief review of the QFF model
in Section 3. The application of the model is
illustrated for two small watersheds in the
mid-Atlantic region in Section using 18 hours
forecast lead-times in Section 4. Final remarks
and overall assessment of the approach are
presented in Section 5.

2. DESCRIPTION OF DATA

2.1 Satellite Data and Characterization of

Convective Weather Systems

The satellite data used to detect and monitor
the presence of convective weather systems
were obtained from the ISCCP-B3 data set (In-
ternational Satellite Cloud Climatology Project;
Rossow et al. 1987). The ISCCP-B3 data set
provides cloud imagery with temporal resolution
of 3 hours and spatial resolution of 30 kms.
CCATS (Convection Classification and Auto-
mated Tracking System), an algorithm devel-
oped by Evans and Shemo (1996) to analyze
infrared satellite data such as the ISCCP-B3,
was used to detect, classify, and track the evolu-
tion of four different types of convective
weather systems: tropical cyclones (CYC);
mesoscale convective complexes (MCC); con-
vective cloud clusters (CCC); and disorganized
short-lived convection (DSL). The classification
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criteria and the basic characteristics of each
convective class are presented in Table 1. For
this work, only five years of data between 1989
and 1993 were available, and Table 2 provides a
summary of the basic statistics of the convective
systems identified in this five-year period in our
region of study. Note that, because the spatial
resolution of the data is 30 kms and summertime
thunderstorms in the mid-Atlantic region fre-
quently occur at smaller spatial scales, the ap-
plicability of CCATS is limited to mesoscale
convective activity during winter and spring.

Furthermore, because of the small number of

tropical cyclones (CYC), and because the con-
vective cloud clusters (DSL) are typically very
short-lived and thus not useful for long-time
forecasts, only two of the convective classes
were used in the QFF model development, spe-
cifically mesoscale complexes (MCCs) and
MCCs and CCCs
are used in the QFF model as index variables

convective clusters (CCCs).

that manifest the character of regional weather.

To illustrate the strong relationship between
the presence of MCCs and rainfall production
within an area, the relationship between MCC
presence and associated streamflow and rain-
fall response are shown in Figs. 2. The solid
line indicates the path of the MCC as it moves
across our domain of study, and the colored
dots are the rainfall rates measured at the rain-
gauges in the radius of influence of the MCC
trajectory. As the MCC evolves spatially over
time, so does the number and locations where
rainfall is observed. It should therefore be ex-
pected that by forecasting the trajectory of
these systems, one should also be able to fore-
cast the space-time evolution of rainfall across
the landscape. To be used as input to the QFF
model, the convective complexes and clusters
were further classified as a function of the lo-
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cation of origin (i.e., where they are first de-
tected) and direction of movement (i.e. direc-
tion of the trajectory). For this purpose, the
region was subdivided in eight areas, and a
spatial climatology of CCCs and MCCs was
derived (Figs. 3(a)-(b)). The quadrants are
classified clockwise from North as follows: 1-
North; 2- Northeast; 3- East; 4- Southeast; 5-
South; 6- Southwest; 7- West; 8- Northwest.
Each class is defined for a range of 45° around
the labeled direction [-22.5°, +22.5°].  Overall,
convective systems move in the E-NE direc-
tions, and while MCCs originate mostly in
W-SW-S-SE quadrants of the domain, CCCs
originate mainly on the S-SE quadrants. This
is consistent with the climatology of heavy
rainstorms in the region, which are normally
associated with southwesterly and southerly
weather systems.

2.2 Radiosonde Data

Data from six radiosonde stations were used
in this study (Tab. 3). Only directional wind
data at 900 hPa, 850 hPa, 800 hPa , 750 hPa,
700 hPa, 650 hPa and 600 hPa pressure levels
were used from each radiosonde station. Pre-
vious studies of the regional hydroclimatology
of rain-producing weather systems in the Cen-
tral Appalachian Mountains of the United
States showed that northerly air masses gener-
ally do not cause rainfall in the region, and
W-SW-S are prevailing wind directions for
rain-producing weather systems (Barros and
Kuligowski, 1996, 1998). In this study, the
characteristics of wind direction for rain-
producing weather systems are similar to that
of previous research, and we used wind direc-
tion data to classify the weather conditions
when convective activity was not detected by
CCATS.
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Table 1. Definitions and basic characteristics of conbvective weather systems from
Satellite cloud imagery (Evans and Shemo, 1996)

Tropical Cyclones (CYC)

Published storm tracks are used to validate storm tracks analyzed by CCATS.
A tracking algorithm is used to follow the trajectory of tropical cyclones.
Systems are matched with MCC or CCC tracks as defined below.

Mesoscale Convective Complexes (MCC)
Size <-54°C regjon has area >50,000 km’
>6 hours (2 frames in the case of ISCCP-B3)

Shape Eccentricity (minor axis/major axis) > 0.7

Duration

Convective Cloud Clusters (CCC)
Size <-54°C region has area >4,000 km®

Duration > 6 hours (2 frames in the case of ISCCP-B3)

Shape No shape criterion

Disorganized, Short-Lived Convection (DSL)

Size Temperature <-34°C for at least one pixel (i.e. Minimum size determined
only by satellite resolution)

Duration 3 hours or less (1 frame in the case of ISCCP-B3)

Shape No shape criterion

Table 2. Basic statistics of convecti

weather systems in our study region during 1989 - 1993

Number 7 50 1,470 7,018
Average Life time (hours) - 14 6 <3

Area (km®) 42,690 239,920 132,850 15,654
Temperature (K) 212 214 214 216
Eccentricity 0.75 0.70 0.53 0.61

Table 3. Radiosonde used in this study

Nashville metro. TN

6.08 -86.41 180
724030 Washington/Dulles, VA 38.57 -71.27 98
724250 Huntington/Tri stat, WV 38.22 -82.33 255
724290 Dayton/James M Cox, OH 39.54 -84.12 306
725200 Pittsburgh Intl, PA 40.30 -80.13 373
725280 Buffalo Intl Arpt, NY 42.56 -78.44 215
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Table 4. Streamflow gauges used in this study

Williamsburg 40.27 78.12 754

Loyalsockville 41.19 75.54 1,147

Table 5. Basic statistics of streamflow data from December to April between
1989 and 1993 periods

Williamsburg 18 21 268 20 23 27 35 51
Loyalsockville 33 43 673 39 45 54 65 90

Table 6. Summary of the different neural network configurations used in the QFF model

TR

C4 Convective weather systems are present, and all predictor raingauges are wet.

C3 Convective weather systems are present, and more than 75% of predictor rain-
gauges are wet.

R4 Convective weather systems have not been detected, and all predictor raingauges
are wet.

RS Convective weather systems have not been detected, and more than 75% of pre-

dictor raingauges are wet.

Combined Various combinations of C4, C3, R4 and R3 based on data availability.

Table 7. Statistical performance measures of the QFF model for forecast lead-times of 18
hours [SS - skill score; CC - correlation coefficient; RMSE - root mean squared error.
The threat scores are presented for 5 different streamflow percentiles (m’/s).]

C4 10 11 0.96 0.97 3 0.79 0.94 1.00 1.00 0.71

Wil- R4 10 33 0.62 0.72 -1 0.69 0.63 0.60 047 0.50
liams-  R3 500 23 0.32 0.72 5 0.71 0.69 0.64 0.58 0.38
burg  Com-
bined

- 23 0.54 0.75 3 0.72 0.71 0.67 0.60 0.44

C4 10 94 0.81 0.76 22 1.00 0.94 0.94 0.94 0.88
Loyal R4 10 138 0.30 0.59 46 0.66 0.65 0.58 0.63 0.49

S‘ffll" R3 100 95 018 052 18 068 069 063 059 055
ville
Com-

bined

- 88 0.39 0.65 11 0.69 0.69 0.64 0.61 0.61
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2.3 Raingauge data

Hourly rainfall from 160 raingauges within
the region (45N/85W ~ 33N/70W) were used
in this study: 40 in New York- NY; 25 in
Ohio-OH; 32 in Pennsylvania-PA; 3 in Mary-
land-MA; 9 in New Jersey-NJ; 3 m Ken-
tucky-KT; 13 in West Virginia-WV; 16 in Vir-
ginia-VA; 3 in Tennessee-TN; 16 in North
Carolina-NC. Missing data at these gauges
were relatively small: in PA, WV, MD, NJ and
VA, the rainfall data exceeded 90% reliability;
in NY, OH, KT, TN and NC, the rainfall data
exceeded 95% reliability.

2.4 Streamflow gauge data

Because hourly streamflow data are not
available for West Virginia, 4 watersheds were
selected in Pennsylvania with areal extent
ranging from 750 km® to 1,150 km’: Wil-
liamsburg and Loyalsockville (Tab. 4). The
locations of the streamflow gauges corre-
sponding to these watersheds are shown in
Fig.1, while basic statistics of the streamflow
The two water-
sheds selected have often experienced severe

data are provided in Table 5.

flooding in the past, and particularly in con-
nection with major floods in the Susquehanna
River basin (Barros and Kuligowski, 1998).

3. REVIEW OF THE QUANTITATIVE
FLOOD FORECASTING MODEL

The QFF model consists of three different
modules. In the first module, the raingauges
are surveyed to look for rainfall occurrences. If
no rainfall is detected in the study area, a
no-rain forecast is issued. Next, the classifica-
tion and decision module is used to describe
and classify current synoptic atmospheric con-

ditions using radiosonde and satellite data. A
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second rain/no rain forecast is issued based on
the likelihood that rain may, or may not occur
at the forecast locations within the prescribed
lead-time (i.e. the next 18 hours). If a positive
rain forecast is issued by the weather classifier,
then the configuration of the neural network
model will be selected according to the
weather conditions (e.g. weather class, sece
Table 6) and as a function of input data avail-
able. Finally, the forecast module consists of a
system of neural network models with at least
four different configurations for each weather
class. Hourly rainfall at four locations (i.c.
predictor raingauges) and streamflow at the
predicted gauge are respectively the inputs and
outputs to the selected neural network model.
The neural network output is an hourly stream-
flow forecast at the desired location at the de-
sired time (desired time = current time + fore-
cast lead-time).

In this study, the neural networks are com-
posed of three layers including input layer,
hidden middle layer, and output layer. Each
node of the hidden layer receives a signal from
every node in the input layer. Besides the data
at the four predictor raingauges, the current
streamflow is also used as input to the neural
network model. Detailed description of the
forecast model are presented in Kim (submit-
ted).

4. RESULTS AND DISCUSSION

Table 6 provides a description of the four
neural network model configurations used to
issue four different types of forecasts in this
study. These configurations were designed to
reflect limitations associated with data avail-
ability and the type of forecast as well. The C4
configuration aims at forecasting the highest
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18-hr lead-time forecasts at the four study watersheds: (a) Wiliamsburg and

(b) Loyalsockville

flood peaks, and can only be used if convective
systems have been detected in the study region.
The R4 configuration serves the same purpose
of C4, but is used only when no convective sys-
tems have been detected. In the R3 configura-
tion, only radiosonde data are used and forecasts
are issued at all times. Thus, while the purpose
of the C4 and R4 configurations is to capture the
extremes, the purpose of the R3 configuration is
to provide forecast coverage for all weather
conditions. The combined forecast is a product
obtained by selecting the highest forecast among
C4, R4 and R3 outputs at all times.

Given that only five years of ISCCP-B3 data
were available, model performance was evalua-
ted using cross-validation to maximize the

amount of data available for training: that is, the

model was trained for each possible combina-
tion of four five-month periods (Decem-
ber-January-February-March-April), and the 5th
was used to evaluate model performance. In this
manner, performance statistics can be generated
for the entire 5-year period.

The time series of observed hourly runoff
amount and the combined forecast product is
presented in Fig. 4(a), whereas Figs. 4(b)-(c) are
zooms of the Fig.4(a) at different times to illus-
trate the overall quality of the QFF model per-
formance. Overall, the figures show that peak
streamflow values are captured well, and timing
errors are small. A global evaluation of the indi-
vidual flood forecasts is provided by the scatter
plots in Figs.5(a) and (b), where the forecasts
are compared with the observations on a
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one-to-one basis. Ideal forecasts should match
the observations exactly, and therefore all the

points in the scatter plot should fall on a 1:1 line.

Remarkably, this is practically the case for the
C4 forecasts. Note that although the C4 and
the R4 configurations were developed with the
same objective of capturing only the largest
floods, the C4 forecasts follow the 1:1 line very
closely, which illustrates the benefit of including
the satellite data in the weather classification

module operationally. Despite some false alarms
(i.e. when the forecast significantly exceeds the
observations) and forecast misses (i.e. when
observed peaks are not captured), both of which
are associated with timing errors, the model
forecasts show very good agreement with the
observed streamflow data for two basins.

Five quantitative measures of forecast skill
were calculated to evaluate the model perform-
ance: 1) the skill score defined as the percentage



Water Engineering Research, Vol. 3, No. 2, 2002

reduction in the mean-squared error with respect
to persistence forecasting method; 2) the corre-
lation coefficient, which describes the strength
of the linear relationship between forecasts and
observations; 3) the bias defined as the degree of
correspondence between the mean forecast and
the mean observation; 4) the root mean squared
error defined as the sum of square of the differ-
ences of the forecasts and observations; and 5)
the threat score, a categorical verification meas-
ure equal to the total number of correct event
forecasts (hits) divided by the total number of
flood forecasts plus the number of misses as
used in Kuligowski and Barros (1998a) as fol-

Jlows:

threat = ————Nh"t

N+ Ny - N, (D
where N, is the number of observed amounts at
or above a predetermined threshold; Ny, is the
number of forecasts at or above this threshold;
and N,;, is the number of instances where both
forecast and the observation exceed the thresh-
old.

A summary of the skill scores is provided in
Tables 7 for 18 hours forecast lead-times. The
skill scores are very high in comparison with the
skill of Quantitative Precipitation Forecasts used
to drive standard operational flood forecasting
models, especially in the case of 18-hour
lead-times. Again, especially remarkable are the
skill scores obtained with the C4 configuration.
To examine the results in more detail, Figs. 6(a)
and (b) illustrate the variation in threat scores
for the different model configurations and dif-
ferent thresholds, that is the 25th, 20th, 15th,
10th, and Sth streamflow percentiles. The real
is that
value-added forecasting skill by using the in-

message implied by these results
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herently synoptic and dynamical satellite data
should not, and must not be ignored in opera-
tional flood forecasting. In addition, the per-
formance of the QFF model was very similar for
all four watersheds, showing that forecast skill is
not sensitive to the spatial scale of the watershed

upstream of the forecast location.

S. CONCLUSIONS

In this study, we developed an operational
forecasting model for ungauged watersheds in the
mid-Atlantic region using a data-driven approach
which makes use of satellite, radiosonde, stream-
flow and rainfall data. This study validates our
hypothesis that accurate and extended flood fore-
cast lead-times can be attained if the synoptic evo-
lution of atmospheric conditions is taken into con-
sideration. Threat scores consistently above 0.6
and close to 0.8 ~ 0.9 were obtained for 18 hour
lead-time forecasts, and skill scores of at least
20 % and up to 60 % were attained.

One contribution of this work is to demon-
strate that multisensor data cast into an expert
information system such as neural networks, if
built upon scientific understanding of regional
hydrometeorology, can lead to significant gains
in the forecast skill of extreme rainfall and asso-
ciated floods. While physically-based numerical
weather prediction and river routing models
cannot accurately depict complex natural
non-linear processes, and thus have difficulty in
simulating extreme events such as heavy rainfall
and floods, data-driven approaches should be
viewed as a strong alternative in operational
hydrology. This is especially more pertinent at a
time when the diversity of sensors in satellites
and ground-based operational weather monitor-
ing systems provide large volumes of data on a
real-time basis.
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