• Title/Summary/Keyword: Weather forecast

검색결과 614건 처리시간 0.028초

다층 퍼셉트론 인공신경망 모형을 이용한 가뭄예측 (Drought Forecasting Using the Multi Layer Perceptron (MLP) Artificial Neural Network Model)

  • 이주헌;김종석;장호원;이장춘
    • 한국수자원학회논문집
    • /
    • 제46권12호
    • /
    • pp.1249-1263
    • /
    • 2013
  • 장기간의 가뭄에 의한 피해를 최소화하기 위해서는 유역에 적합한 가뭄관리 대책의 수립과 함께 미래에 발생하게 될 가뭄을 미리 예측할 수 있는 기술이 구축되어야 한다. 또한 미래의 가뭄에 대한 합리적 대응 방안을 수립하기 위해서는 가뭄의 지속기간(duration)과 심도(severity)의 정량적인 예측이 선행되어야 한다. 본 연구에서는 수문 시계열의 예측에 가장 많이 이용되고 있는 대표적인 통계학적 기법인 인공신경망 모형(Artificial Neural Network Model)과 가뭄지수를 이용하여 남한지역의 서울, 대전, 대구, 광주 등의 4개 기상관측소를 선정하여 가뭄예측을시도하였다. 가뭄 예측을 위하여 남한지역 내 선정한 기상관측소의 관측된 과거 강수량 자료를 이용하여 산정된 SPI (Standardized Precipitation Index)를 입력변수로 하여 다층 퍼셉트론(Multi Layer Perceptron) 인공신경망 모델에 적용하였으며, 매개변수 보정을 위한 학습기간으로 1976~2000년과 2001~2010년을 예측을 위한 검증기간으로 선정하여, 학습 및 예측을 시도하였다. 학습된 최적의 예측모형을 이용하여 서로 다른 선행예보시간(1~6개월)을 갖고 SPI (3), SPI (6), SPI (12)별로 가뭄을 예측하였으며, 가뭄예측 결과, SPI (3)의 경우에는 1개월 선행예보에서만 좋은 결과를 나타내었으며, SPI (6)의 경우 1~3개월 후의 가뭄을 예측하는 경우에 비교적 관측자료와 잘 일치하는 결과를 나타내었다. SPI (12)의 경우에는 약5개월 후까지의 가뭄예측에 양호한 결과를 나타내었다.

다양한 GIS 플랫폼을 위한 고해상도 기상레이더 정보 시각화 기법 (A Visualization Method of High Definition Weather Radar Information for various GIS Platforms)

  • 장봉주;임상훈;이석환;문광석;;권기룡
    • 한국멀티미디어학회논문지
    • /
    • 제16권11호
    • /
    • pp.1239-1249
    • /
    • 2013
  • 기상레이더의 발전과 더불어 국내외적으로 정밀한 기상레이더를 이용한 토네이도, 돌발홍수 등의 돌발적인 기상현상에 대한 기상데이터 분석 및 기상현상 예측 기술 등의 연구가 활발히 이루어지고 있다. 그에 반해 레이더 자료에 대한 시각화 및 표출 방법에 대한 관심이 증가하고 있지만, 현재까지의 기상과 관련한 각 국가 기관 등에서는 단순히 표출된 레이더영상을 GIS 데이터에 사상하여 해석하는 데 급급한 실정이다. 본 논문은 저고도에서 일어나는 국지성, 기습성 기상변화를 관측하고 효과적으로 대응하기 위해, 시 공간적고해상도를 갖는 기상레이더로부터 관측된 데이터 자료를 효과적으로 표현하기 위해 다양한 GIS 플랫폼에서 서비스할 수 있는 고해상도 기상관측 데이터의 표현 기법을 제안한다. 제안 기법에서는 기상레이더로부터 획득된 데이터를 이용하여 래스터 및 벡터 형태의 고해상도 자료구조로 변환하여 GIS 플랫폼 상에서 정확한 좌표위치와 고도에 직관적으로 인지할 수 있도록 하기 위한 방법을 제시하였다. 실험결과 GIS 플랫폼과 융합된 고해상도 기상데이터를 이용함으로써 돌발성 기후변화, 국지성 폭우, 토네이도 등의 정확한 위치와 고도 등의 정보를 포함하여 기상상황을 직관적으로 인지하고, 상세히 분석할 수 있는 것을 확인하였다.

기상청 고해상도 국지 앙상블 예측 시스템 구축 및 성능 검증 (Development and Evaluation of the High Resolution Limited Area Ensemble Prediction System in the Korea Meteorological Administration)

  • 김세현;김현미;계준경;이승우
    • 대기
    • /
    • 제25권1호
    • /
    • pp.67-83
    • /
    • 2015
  • Predicting the location and intensity of precipitation still remains a main issue in numerical weather prediction (NWP). Resolution is a very important component of precipitation forecasts in NWP. Compared with a lower resolution model, a higher resolution model can predict small scale (i.e., storm scale) precipitation and depict convection structures more precisely. In addition, an ensemble technique can be used to improve the precipitation forecast because it can estimate uncertainties associated with forecasts. Therefore, NWP using both a higher resolution model and ensemble technique is expected to represent inherent uncertainties of convective scale motion better and lead to improved forecasts. In this study, the limited area ensemble prediction system for the convective-scale (i.e., high resolution) operational Unified Model (UM) in Korea Meteorological Administration (KMA) was developed and evaluated for the ensemble forecasts during August 2012. The model domain covers the limited area over the Korean Peninsula. The high resolution limited area ensemble prediction system developed showed good skill in predicting precipitation, wind, and temperature at the surface as well as meteorological variables at 500 and 850 hPa. To investigate which combination of horizontal resolution and ensemble member is most skillful, the system was run with three different horizontal resolutions (1.5, 2, and 3 km) and ensemble members (8, 12, and 16), and the forecasts from the experiments were evaluated. To assess the quantitative precipitation forecast (QPF) skill of the system, the precipitation forecasts for two heavy rainfall cases during the study period were analyzed using the Fractions Skill Score (FSS) and Probability Matching (PM) method. The PM method was effective in representing the intensity of precipitation and the FSS was effective in verifying the precipitation forecast for the high resolution limited area ensemble prediction system in KMA.

3차원 변분법을 사용한 이중 도플러 바람장 분석 (Dual Doppler Wind Retrieval Using a Three-dimensional Variational Method)

  • 이선용;최영진;장동언
    • 대기
    • /
    • 제17권1호
    • /
    • pp.69-86
    • /
    • 2007
  • The characteristics of the dual-Doppler wind retrieval method based on a three dimensional variational (3DVAR) conception were investigated from the following four points of view; the sensitivity of the number of iteration, the effect of the weak constraint term, the effect of the smoothness term, and the sensitivity of the error mixing ratio of the radial velocities. In the experiment, the radial velocities relative to the Gosan and Jindo radar sites of the Korea Meteorological Administration (KMA) were calculated from the forecasting of the WRF (Weather Research and Forecast; Skamarock, 2004) model at 1330 UTC 30 June 2006, which is the one and half hour forecast from the initial time, 1200 UTC on that day. The results showed that the retrieval performance of the horizontal wind field was robust, but that of the vertical wind was sensitive to the external conditions, such as iteration number and the on/off of the weak constraint term. The sensitivity of error mixing ratio was so large that even the horizontal wind retrieval efficiency was reduced a lot. But the sensitivity of the smooth term was not so large. When we applied this method to the real mesoscale convective system (MCS) between the Gosan and Jindo radar pair at 1430 UTC 30 June 2006, the wind structure of the convective cells in the MCS was consistently retrieved relative to the reflectivity factor structure. By comparing the vertical wind structure of this case with that of 10 minutes after, 1440 UTC 30 June 2006, we got the physical consistency of our method.

위성자료가 기상청 전지구 통합 분석 예측 시스템에 미치는 효과 (The Impact of Satellite Observations on the UM-4DVar Analysis and Prediction System at KMA)

  • 이주원;이승우;한상옥;이승재;장동언
    • 대기
    • /
    • 제21권1호
    • /
    • pp.85-93
    • /
    • 2011
  • UK Met Office Unified Model (UM) is a grid model applicable for both global and regional model configurations. The Met Office has developed a 4D-Var data assimilation system, which was implemented in the global forecast system on 5 October 2004. In an effort to improve its Numerical Weather Prediction (NWP) system, Korea Meteorological Administration (KMA) has adopted the UM system since 2008. The aim of this study is to provide the basic information on the effects of satellite data assimilation on UM performance by conducting global satellite data denial experiments. Advanced Tiros Operational Vertical Sounder (ATOVS), Infrared Atmospheric Sounding Interferometer (IASI), Special Sensor Microwave Imager Sounder (SSMIS) data, Global Positioning System Radio Occultation (GPSRO) data, Air Craft (CRAFT) data, Atmospheric Infrared Sounder (AIRS) data were assimilated in the UM global system. The contributions of assimilation of each kind of satellite data to improvements in UM performance were evaluated using analysis data of basic variables; geopotential height at 500 hPa, wind speed and temperature at 850 hPa and mean sea level pressure. The statistical verification using Root Mean Square Error (RMSE) showed that most of the satellite data have positive impacts on UM global analysis and forecasts.

전처리 방법과 인공지능 모델 차이에 따른 대전과 부산의 태양광 발전량 예측성능 비교: 기상관측자료와 예보자료를 이용하여 (Comparison of Solar Power Generation Forecasting Performance in Daejeon and Busan Based on Preprocessing Methods and Artificial Intelligence Techniques: Using Meteorological Observation and Forecast Data)

  • 심채연;백경민;박현수;박종연
    • 대기
    • /
    • 제34권2호
    • /
    • pp.177-185
    • /
    • 2024
  • As increasing global interest in renewable energy due to the ongoing climate crisis, there is a growing need for efficient technologies to manage such resources. This study focuses on the predictive skill of daily solar power generation using weather observation and forecast data. Meteorological data from the Korea Meteorological Administration and solar power generation data from the Korea Power Exchange were utilized for the period from January 2017 to May 2023, considering both inland (Daejeon) and coastal (Busan) regions. Temperature, wind speed, relative humidity, and precipitation were selected as relevant meteorological variables for solar power prediction. All data was preprocessed by removing their systematic components to use only their residuals and the residual of solar data were further processed with weighted adjustments for homoscedasticity. Four models, MLR (Multiple Linear Regression), RF (Random Forest), DNN (Deep Neural Network), and RNN (Recurrent Neural Network), were employed for solar power prediction and their performances were evaluated based on predicted values utilizing observed meteorological data (used as a reference), 1-day-ahead forecast data (referred to as fore1), and 2-day-ahead forecast data (fore2). DNN-based prediction model exhibits superior performance in both regions, with RNN performing the least effectively. However, MLR and RF demonstrate competitive performance comparable to DNN. The disparities in the performance of the four different models are less pronounced than anticipated, underscoring the pivotal role of fitting models using residuals. This emphasizes that the utilized preprocessing approach, specifically leveraging residuals, is poised to play a crucial role in the future of solar power generation forecasting.

WRF 모델에서 모의된 2005년 장마 기간 강수의 동조성 연구 (A Study on the Coherence of the Precipitation Simulated by the WRF Model during a Changma Period in 2005)

  • 변재영;원혜영;조천호;최영진
    • 대기
    • /
    • 제17권2호
    • /
    • pp.115-123
    • /
    • 2007
  • The present study uses the GOES IR brightness temperature to examine the temporal and spatial variability of cloud activity over the region $25^{\circ}N-45^{\circ}N$, $105^{\circ}E-135^{\circ}E$ and analyzes the coherence of eastern Asian summer season rainfall in Weather Research and Forecast (WRF) model. Time-longitude diagram of the time period from June to July 2005 shows a signal of eastward propagation in the WRF model and convective index derived from GOES IR data. The rain streaks in time-latitude diagram reveal coherence during the experiment period. Diurnal and synoptic scales are evident in the power spectrum of the time series of convective index and WRF rainfall. The diurnal cycle of early morning rainfall in the WRF model agrees with GOES IR data in the Korean Peninsula, but the afternoon convection observed by satellite observation in China is not consistent with the WRF rainfall which is represented at the dawn. Although there are errors in strength and timing of convection, the model predicts a coherent tendency of rainfall occurrence during summer season.

2004년 3월 4일 대설 사례에 관한 분석과 예보를 위한 제안 (Analyses of the Heavy Snowfall Event Occurred over the Middle Part of the Korean Peninsula on March 4, 2004 and Suggestions for the Future Forecast)

  • 조익현;유희동;이우진;신경섭
    • 대기
    • /
    • 제14권3호
    • /
    • pp.3-18
    • /
    • 2004
  • A heavy snowfall event occurred over the middle part of the Korean peninsula on March 4, 2004. The numerical models of KMA failed to forecast this heavy snowfall event because this event was due to small scale disturbance by low lever convergence and atmospheric instability. The analyses for this heavy snowfall have been performed to give forecasters useful suggestions for forecasting heavy snowfall events in the future. The analyses for the snowfall event were recounted by the Hourly Korean Peninsula Analysis Weather Chart (HKPAWC) presenting on the KMA intranet system. We confirmed that warm air flows of low level into south central Korea in conjunction with strong southwesterly winds played important role in the heavy snowfall event. We suggested several check points to improve the forecast of heavy snowfall events in the future through the results of the analyses.

2013년 태풍에 대한 수치모델들의 강도 예측성 평가 (Evaluation of the Intensity Predictability of the Numerical Models for Typhoons in 2013)

  • 김지선;이우정;강기룡;변건영;김지영;윤원태
    • 대기
    • /
    • 제24권3호
    • /
    • pp.419-432
    • /
    • 2014
  • An assessment of typhoon intensity predictability of numerical models was conducted to develop the typhoon intensity forecast guidance comparing with the RSMC-Tokyo best track data. Root mean square error, box plot analysis and time series of wind speed comparison were performed to evaluate the each model error level. One of noticeable fact is that all models have a trend of error increase as typhoon becomes stronger and the Global Forecast System showed the best performance among the models. In the detailed analysis in two typhoon cases [Danas (1324) and Haiyan (1330)], GFS showed good performance in maximum wind speed and intensity trend in the best track, however it could not simulate well the rapid intensity increasing period. On the other hand, ECMWF and Hurricane-WRF overestimated the typhoon intensity but simulated track trend well.

Application of smart mosquito monitoring traps for the mosquito forecast systems by Seoul Metropolitan city

  • Na, Sumi;Yi, Hoonbok
    • Journal of Ecology and Environment
    • /
    • 제44권2호
    • /
    • pp.98-105
    • /
    • 2020
  • Background: The purpose of this study, mosquito forecast system implemented by Seoul Metropolitan city, was to obtain the mosquito prediction formula by using the mosquito population data and the environmental data of the past. Results: For this study, the mosquito population data from April 1, 2015, to October 31, 2017, were collected. The mosquito population data were collected from the 50 smart mosquito traps (DMSs), two of which were installed in each district (Korean, gu) in Seoul Metropolitan city since 2015. Environmental factors were collected from the Automatic Weather System (AWS) by the Korea Meteorological Administration. The data of the nearest AWS devices from each DMS were used for the prediction formula analysis. We found out that the environmental factors affecting the mosquito population in Seoul Metropolitan city were the mean temperature and rainfall. We predicted the following equations by the generalized linear model analysis: ln(Mosquito population) = 2.519 + 0.08 × mean temperature + 0.001 × rainfall. Conclusions: We expect that the mosquito forecast system would be used for predicting the mosquito population and to prevent the spread of disease through mosquitoes.