• 제목/요약/키워드: Weather Satellite

검색결과 478건 처리시간 0.02초

기후요인에 의한 철원지역 두루미류 월동개체수 변화 - MODIS 위성영상을 이용한 눈 덮임 범위와 지속기간의 영향 - (Wintering Population Change of the Cranes according to the Climatic Factors in Cheorwon, Korea: Effect of the Snow Cover Range and Period by Using MODIS Satellite Data)

  • 유승화;이기섭;정화영;김화정;허위행;김진한;박종화
    • 생태와환경
    • /
    • 제48권3호
    • /
    • pp.176-187
    • /
    • 2015
  • 본 연구에서는 기후요인에 의하여 두루미류의 월동개체군 규모가 달라질 것으로 가설을 세웠다. 그중 가장 추운 시기인 1월의 기후변수에 의하여 월동개체수가 달라질 것이라고 가정하였다. 특히, 재두루미의 경우 두루미와는 달리 철원지역 이외에 눈 덮임의 영향이 적은 대체 월동지(일본의 이즈미)가 있다. 따라서 철원지역 눈 덮임의 정도에 따라 연도별로 개체군의 증감이 발생할 것으로 예측하였다. 이에 일반적으로 분석되는 기상청의 기후자료와 함께 MODIS 위성영상을 이용한 눈 덮임 범위 자료를 활용하여 요인을 분석하였다. 철원지역 두루미류의 개체수 자료는 2002년부터 2014년까지의 1월 개체수를 활용하였다. 철원지역의 기온은 2002년부터 2007~2008년도 월동기까지 증가하다가 감소하며 2011~2012년도 월동기에 가장 낮은 온도를 보였다. 이와 함께 온량지수도 유사한 증감의 경향을 보였다. 신적설량은 2002년 이후 낮게 유지되었으나 2010~2011, 2011~2012년 크게 증가한 형태를 보였다. 눈 덮임의 범위는 2002년부터 2005~2006년까지 급속히 감소하였다가, 2009~ 2010, 2010~2011년 월동기에 급격히 증가한 양상을 보였다. 재두루미의 월동개체수는 다른 기후요인에 비하여 1월의 눈 덮임 범위가 넓을수록 감소하였으며 가장 높은 상관관계를 보였다. 하지만 두루미의 개체수는 일반적 기후요인뿐만 아니라 눈 덮임 관련 요인에 대해서도 상관관계를 나타내지 않았다. 따라서 두루미의 개체군 변동은 기후요인에 변화하지 않고 다른 서식지 선택요인 (안정적 잠자리, 취식지 넓이 등)에 의해 결정되기 때문이라 판단된다. 재두루미의 월동개체수는 다중 회기분석에서 눈 덮임 범위 및 기간의 로그값과 유의미한 회귀관계가 성립하였다. 따라서 재두루미의 월동개체수는 월동기 눈 덮임의 범위에 영향을 받으며 이는 눈 덮임에 의해 먹이원인 낙곡을 찾기 힘들어지기 때문인 것으로 판단된다. 재두루미의 개체수 변화는 다른 월동지로 이동한 것으로 보이며, 눈 덮임의 영향이 적은 월동지인 일본의 이즈미시로 이동한 것으로 나타났다. 이즈미 월동지의 재두루미 개체수와 철원의 개체수는 음의 상관관계를 가져 서로 연관된 것으로 파악되었다.

인공위성 합성개구레이더 영상 자료의 해양 활용 - 해상풍 산출을 중심으로 - (Oceanic Application of Satellite Synthetic Aperture Radar - Focused on Sea Surface Wind Retrieval -)

  • 장재철;박경애
    • 한국지구과학회지
    • /
    • 제40권5호
    • /
    • pp.447-463
    • /
    • 2019
  • 해상풍은 해양 현상을 이해하고, 지구 온난화에 의한 지구 환경의 변화를 분석하기 위한 필수 요소이다. 전세계 연구 기관은 해상풍을 정확하고 지속적으로 관측하기 위해 산란계(scatterometer)를 개발하여 운영해오고 있으며, 정확도는 풍향이 ${\pm}20^{\circ}$, 풍속이 ${\pm}2m\;s^{-1}$ 안팎이다. 하지만, 산란계의 해상도는 12.5-25.0 km로, 해안선이 복잡하고 섬이 많은 한반도 근해에서는 자료의 결측이 빈번하게 발생하여 활용도가 감소한다. 그에 반해, Synthetic Aperture Radar (SAR, 합성개구레이더)는 마이크로파를 활용하는 전천후 센서로, 1 km 이하의 고해상도 해상풍이 산출이 가능하여 산란계의 단점 보완이 가능하다. 본 연구에서는 일반적으로 활용되는 SAR 자료 기반 해상풍 산출 알고리즘인 Geophysical Model Function (GMF, 지구 물리 모델 함수)를 밴드별로 분류하여 조사하였다. 상대 풍향, 입사각, 풍속에 따른 후방산란계수를 L-band Model (LMOD, L 밴드 모델), C-band Model (CMOD, C 밴드 모델), X-band Model (XMOD, X 밴드 모델)에 적용하여 모의하였고, 각 GMF의 특성을 분석하였다. 이러한 GMF를 SAR 탑재 인공위성 자료에 적용하여 산출한 해상풍의 정확도 검증 연구에 대해 조사하였다. SAR 자료 기반 해상풍의 정확도는 영상 관측 모드, 적용한 GMF의 종류, 정확도 비교 기준 자료, SAR 자료 전처리 방법, 상대 풍향 정보 산출 방법 등에 따라 변하는 것으로 나타났다. 본 연구를 통해 국내 연구자들의 SAR 자료 기반 해상풍 산출 방법에 대한 접근성이 향상되고, 고해상도 해상풍 자료를 활용한 한반도 근해 분석에 이바지할 것으로 기대된다.

Sentinel-1 SAR 영상을 이용한 주성분분석 및 K-means Clustering 기반 산불 탐지 (Detection of Forest Fire Damage from Sentinel-1 SAR Data through the Synergistic Use of Principal Component Analysis and K-means Clustering)

  • 이재세;김우혁;임정호;권춘근;김성용
    • 대한원격탐사학회지
    • /
    • 제37권5_3호
    • /
    • pp.1373-1387
    • /
    • 2021
  • 산불은 지표 에너지 균형, 사회 및 환경에 중대한 위협을 미치며, 사회경제적 손실을 일으킨다. 한편, 현재까지 널리 사용되고 있는 다중분광 위성 영상 기반 산불 피해 탐지 알고리즘은 구름으로 인한 반사도 오염으로 인해 시의적절한 산불 정보를 얻기 어려운 문제가 있다. 따라서 본 연구에서는 구름에 영향을 받지 않는 유럽우주국의 Sentinel-1 SAR (Synthetic Aperture Radar) 자료로부터 2019년 4월 초에 발생한 남한 강원도의 강릉·동해, 고성·속초 및 인접한 북한의 두 산불 발생 지역을 대상으로 주성분분석(Principal Component Analysis; PCA)을 포함하는 일련의 전 처리 및 K-means clustering을 이용하여 산불 피해 면적을 탐지하였다. 추정된 산불 면적은 국립산림과학원에서 남한의 두 산불에 대해 제공한 산불 피해 면적 및 강도 참조자료 및 산불 피해 탐지에 널리 사용되는 dNBR (differenced Normalized Burn Ratio)을 사용하여 검증하였다. 국립산림과학원의 참조자료 기반 검증에서 강릉·동해와 고성·속초 산불에 대해 평균 약 86%의 정확도를 보였다. dNBR을 사용한 검증에서는 남한 및 북한의 지역 모두에 대해 평균 약 84%의 정확도를 보였다. 이때, 산불 강도가 강할수록 산불 면적 탐지 성능이 높고 반대로 산불 강도가 약할수록 산불 면적 탐지 성능이 낮은 것을 확인할 수 있었다. 본 연구를 통해 검증된 SAR 영상을 이용한 PCA 및 K-means clustering 기반 탐지 알고리즘이 추후 구름의 영향이 크고 작은 산불이 빈번하게 발생하는 한반도에 대하여 신속한 산불 피해 면적 탐지에 활용될 수 있을 것으로 기대된다.

인공위성 원격탐사를 이용한 백두산 화산 감시 연구 리뷰 (A Review on Monitoring Mt. Baekdu Volcano Using Space-based Remote Sensing Observations)

  • 홍상훈;장민정;정성우;박서우
    • 대한원격탐사학회지
    • /
    • 제34권6_4호
    • /
    • pp.1503-1517
    • /
    • 2018
  • 백두산은 중국과 북한의 국경 경계에 위치하고 있는 성층화산으로 신생대 올리고세 이후 주요 분화 단계를 거쳐 형성된 것으로 알려져 있다. 2010년 이후 마그마 재활동으로 인한 백두산 화산활동 여부에 대한 관심이 증대되고 있다. 백두산 화산 활동을 감시하기 위한 연구는 기상청, 한국지질자원연구원 등 국가기관 중심으로 활발히 수행되고 있다. 2018년에는 한-중 백두산 공동 관측 장기연구 과제가 선정되었으며 이로부터 화산특화연구센터가 설립되기도 하였다. 그러나 백두산은 우리나라로부터 지리적으로 멀리 떨어져 있어 접근에 대한 제약이 있을 뿐만 아니라 백두산 화산 주변에 설치되어 있는 현장 관측 장비로부터 수집된 현장 자료의 공유 혹은 접근이 쉽지 않은 상황이다. 원격탐사는 직접적인 물리적 접촉 없이 대상 물체에 대한 특성을 원격으로 측정하는 수단으로서, 대상물의 관측을 위해 자동차, 무인기, 항공기, 인공위성 등 여러 형태의 플랫폼이 사용된다. 지난 수십 년 간, 다양한 파장 대역에서의 전자기파를 이용한 원격탐사 자료를 활용하여 화산 감시 연구가 수행되어 왔다. 특히 레이더 원격탐사는 주야조건, 기상조건에 관계없이 자료를 획득할 수 있을 뿐만아니라 위상정보를 이용한 레이더 위상간섭기법을 통한 미세 지표 변위 관측이 가능하여 매우 널리 이용되고 있는 화산 감시 기술이다. 본 논문의 목적은 백두산 화산 관측을 위해 수행된 기존 원격탐사 연구 문헌을 수집하고 동향을 파악하는 것이다. 또한 지속적인 화산 감시를 위한 가용 영상레이더 위성정보를 조사하여 향후 이를 바탕으로 백두산 화산 지표 변위의 주기적 탐지 연구를 수행하는데 활용할 예정이다.

MODIS와 ASOS 자료를 이용한 식물계절 모델링 (Modeling of Vegetation Phenology Using MODIS and ASOS Data)

  • 김근아;윤유정;강종구;최소연;박강현;천정화;장근창;원명수;이양원
    • 대한원격탐사학회지
    • /
    • 제38권5_1호
    • /
    • pp.627-646
    • /
    • 2022
  • 최근 지구 온난화로 인한 기후 변화와 관련된 문제의 심각성이 커지고 있으며 평균 기온 또한 상승하고 있다. 이로 인해 온도에 민감한 다양한 생물과 생물이 살아가는 환경에 영향을 미치고 있으며, 생태계의 변화 역시 감지되고 있다. 계절은 그 지역에 사는 생물의 종류, 분포, 생육 특성 등에 영향을 미치는 중요한 요인의 하나이다. 기후 변화 영향 평가의 지표 중 가장 대중적이고 쉽게 인식될 수 있는 식물 계절 중 개화일과 단풍나무 절정일의 모델링을 수행하였다. 모델링에 사용된 식물의 종류에는 봄을 대표하는 식물로 볼 수 있는 개나리와 벚나무, 가을을 대표하는 식물로 볼 수 있는 단풍 나무와 은행 나무를 사용하였다. 모델링을 수행할 때 사용된 기상 자료로는 기상청의 Automated Surface Observing System (ASOS) 관측소를 통해서 관측된 기온, 강수, 일사 자료를 사용하였으며, 개나리, 벚나무의 개화일과 약 -0.2, 은행나무, 단풍나무의 단풍 절정일과 약 0.3 정도의 상관 계수를 가지는 Moderate Resolution Imaging Spectroradiometer (MODIS) 식생지수를 사용하여 모델링을 수행하였다. 사용된 모델로는 선형 모델인 다중 회귀 모형과, 비선형 모델인 Random Forest (RF)를 사용하여 모델을 수립하였다. 또한 각 모형으로 추정된 예측 값을 공간 내삽 기법을 이용하여 등치 선도로 2003~2020년의 식물 계절 변화 경향 성을 표현하였다. 향후에 높은 시공간 해상도를 가지는 식생지수를 사용한다면 더 높은 식물 계절 모델링의 정확도를 높일 수 있을 것으로 판단된다.

작물모형 입력자료용 일사량 추정을 위한 지역 특이적 AP 계수 평가 (Assessment of Region Specific Angstrom-Prescott Coefficients on Uncertainties of Crop Yield Estimates using CERES-Rice Model)

  • 조영상;정재민;현신우;김광수
    • 한국농림기상학회지
    • /
    • 제24권4호
    • /
    • pp.256-266
    • /
    • 2022
  • 일사량은 작물모형의 구동에 필수적인 요소지만, 일사량의 직접관측은 다른 기상자료들과 다르게 많은 인적, 물적 자원이 필요하다. 직접 일사량을 측정하는 대신 다른 기상자료를 통해 일사량을 추정하는 여러 방식이 존재하고 그중 대표적인 방법이 일조시간을 통해 일사량을 추정하는 Angstrom-Prescott 모델이다. Frere and Popov(1979)에 의해 전세계의 기후를 세 분류로 나누어 일조시간을 일사량으로 변환하는 AP 계수(APFrere)가 제시되었고, 국내 18개 종관기상관측소에서 30년간 관측한 일단위 일사량과 일조량 관측자료를 통해 AP계수를 경험적으로 도출한 계수(APChoi)가 Choi et al.(2010)에 의해 제시되었다. 본 연구에서는 2012년부터 2021년까지 일사량 관측값(SObs)과 APFrere와 APChoi를 통해 도출한 일사량(SFrere, SChoi)을 NRMSE와 t검정을 통해 분석하였고, 이를 DSSAT 작물모형에 입력모수로 사용하여 벼 품종 오대, 화성 및 추청에 대한 생육모의를 하였다. 일사량 추정 결과 일사량의 추정값과 측정값 사이에는 12%에서 22%사이의 오차가 존재하였고, 이를 3월부터 9월 사이의 생육기간에 한정하여 누적 일사량을 계산하면 오차가 줄었다. 18개의 지역중 관찰값과 생육기간의 누적 일사량은 SFrere의 경우에 10개의 지역에서 SChoi 보다 SObs와 가까웠고, 일일 일사량의 오차율을 통해 분석하였을때 SFrere가 12개 지역에서 더 가까웠다.

심층신경망과 천리안위성 2A호를 활용한 지상기온 추정에 관한 연구 (Estimation for Ground Air Temperature Using GEO-KOMPSAT-2A and Deep Neural Network)

  • 엄태윤;김광년;조용한;송근용;이윤정;이윤곤
    • 대한원격탐사학회지
    • /
    • 제39권2호
    • /
    • pp.207-221
    • /
    • 2023
  • 본 연구는 천리안위성 2A호의 Level 1B (L1B) 정보를 사용해 지상기온을 추정하기 위한 심층신경망(deep neural network, DNN) 기법을 적용하고 검증을 실시하였다. 지상기온은 지면으로부터 1.5 m 높이의 대기온도로 일상생활뿐만 아니라 폭염이나 한파와 같은 이슈에 밀접한 관련을 갖는다. 지상기온은 지표면 온도와 대기의 열 교환에 의해 결정되므로 위성으로부터 산출된 지표면 온도(land surface temperature, LST)를 이용한 지상기온 추정 연구가 활발하였다. 하지만 천리안위성 2A호 산출물 LST는 Level 2 정보로 구름영향이 없는 픽셀만 산출되는 한계가 있다. 따라서 본 연구에서는 Advanced Meteorological Imager 센서에서 측정된 원시데이터에 오직 복사와 위치보정을 마친 L1B 정보를 사용해 지상기온을 추정하기 위한 DNN 모델을 제시하고 그 성능을 가늠하기 위해 위성 LST와 지상관측 기온 사이의 선형회귀모델을 기준모델로 사용하였다. 연구기간은 2020년부터 2022년까지 3년으로 평가기간 2022년을 제외한 기간은 훈련기간으로 설정했다. 평가지표는 기상청의 종관기상관측소에서 정시에 관측된 기온정보로 평균 제곱근 오차를 사용하였다. 관측지점에서 추출된 픽셀 중 손실된 픽셀의 비율은 LST는 57.91%, L1B는 1.63%를 보였으며 LST의 비율이 낮은 이유는 구름의 영향 때문이다. 제안한 DNN의 구조는 16개 L1B 자료와 태양정보를 입력 받는 층과 은닉층 4개, 지상기온 1개를 출력하는 층으로 구성하였다. 연구결과 구름의 영향이 없는 경우 DNN 모델이 root mean square error (RMSE) 2.22℃로 기준모델의 RMSE 3.55℃ 보다 낮은 오차를 보였고, 흐린 조건을 포함한 총 RMSE는 3.34℃를 나타내면서 구름의 영향을 제거할 수 있을 것으로 보였다. 하지만 계절과 시간에 따른 분석결과 여름과 겨울철에 모델의 결정계수가 각각 0.51과 0.42로 매우 낮게 나타났고 일 변동의 분산이 0.11과 0.21로 나타났다. 가시채널을 고려해 태양 위치정보를 추가한 결과에서 결정계수가 0.67과 0.61로 개선되었고 시간에 따른 일 변동의 분산도 0.03과 0.1로 감소하면서 모든 계절과 시간대에 더 일반화된 모델을 생성할 수 있었다.

Sentinel-1 레이더 식생지수와 AutoML을 이용한 Sentinel-2 NDVI 결측화소 복원 (Gap-Filling of Sentinel-2 NDVI Using Sentinel-1 Radar Vegetation Indices and AutoML)

  • 윤유정;강종구;김서연;정예민;최소연;임윤교;서영민;원명수;천정화;김경민;장근창;임중빈;이양원
    • 대한원격탐사학회지
    • /
    • 제39권6_1호
    • /
    • pp.1341-1352
    • /
    • 2023
  • 위성영상 기반의 정규식생지수(normalized difference vegetation index, NDVI)는 넓은 영역에서 주기적인 정보를 수집할 수 있어 산림 및 농업 모니터링에 주로 사용된다. 그러나 광학센서 기반 식생지수는 구름 등의 영향으로 일부 지역에서 결측을 가지기 때문에, 본 연구는 전천후 및 주야에 관계없이 관측 가능한 Sentinel-1의 합성 개구 레이더(synthetic aperture radar, SAR) 영상을 활용하여 Sentinel-2 NDVI 결측값을 복원하는 모델을 개발하였다. 이는 광학적으로 관측이 어려운 구름 조건이나 야간에도 NDVI를 추정할 수 있는 잠재력을 보여준다. Automated machine learning (AutoML)을 활용한 비선형 결측복원모델의 5폴드(fold) 교차검증 결과, 절대오차 7.214E-05, 상관계수 0.878의 NDVI 복원 성능을 보였다. 이를 통해 시공간 연속적인 NDVI 생산 방법론을 발전시켜, 전천후 식생 모니터링에 필요한 정보 생산에 기여할 수 있을 것으로 기대된다.