• Title/Summary/Keyword: Weather Observation

Search Result 610, Processing Time 0.041 seconds

A Study on Growth and Development Information and Growth Prediction Model Development Influencing on the Production of Citrus Fruits

  • Kang, Heejoo;Lee, Inseok;Goh, Sangwook;Kang, Seokbeom
    • Agribusiness and Information Management
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 2014
  • The purpose of this study is to develop the growth prediction model that can predict growth and development information influencing on the production of citrus fruits. The growth model was developed to predict the floral leaf ratio, number of fruit sets, fruit width, and overweight fruits depending on the main period of growth and development by considering the weather factors because the fruit production is influenced by weather depending on the growth and development period. To predict the outdoor-grown citrus fruit production, the investigation result for the standard farms is used as the basic data; in this study, we also understood that the influence of weather factors on the citrus fruit production based on the data from 2004 to 2013 of the outdoor-grown citrus fruit observation report in which the standard farms were targeted by the Agricultural Research Service and suggested the growth and development information prediction model with the weather information as an independent variable to build the observation model. The growth and development model for outdoor-grown citrus fruits was assumed by using the Ordinary Least Square method (OLS), and the developed growth prediction model can make a prediction in advance with the weather factors prior to the observation investigation for the citrus fruit production. To predict the growth and development information of the production of citrus fruits having a great ripple effect as a representative crop in Jeju agriculture, the prediction result regarding the production applying the weather factors depending on growth and development period could be applied usefully.

A Case Study on Rainfall Observation and Intensity Estimation using W-band FMCW Radar (W밴드 FMCW 레이더를 이용한 강우 관측 및 강우 강도 추정 사례 연구)

  • Jang, Bong-Joo;Lim, Sanghun
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.12
    • /
    • pp.1430-1437
    • /
    • 2019
  • In this paper, we proposed a methodology for estimating rainfall intensity using a W-band FMCW automotive radar signal which is the core technology of autonomous driving car. By comparing and analyzing the results of rainfall and non-rainfall observation, we found that the reflection intensity of the automotive radar is changed with rainfall intensity. We could confirm the possibility of deriving the quantitative precipitation estimation using the methodology derived from this result. In addition it can be possible to develop a new paradigm of precipitation observation technique by observing various events together with the weather radar and the ground rainfall observation equipment.

Observing System Experiment Based on the Korean Integrated Model for Upper Air Sounding Data in the Seoul Capital Area during 2020 Intensive Observation Period (2020년 수도권 라디오존데 집중관측 자료의 한국형모델 기반 관측 영향 평가)

  • Hwang, Yoonjeong;Ha, Ji-Hyun;Kim, Changhwan;Choi, Dayoung;Lee, Yong Hee
    • Atmosphere
    • /
    • v.31 no.3
    • /
    • pp.311-326
    • /
    • 2021
  • To improve the predictability of high-impact weather phenomena around Seoul, where a larger number of people are densely populated, KMA conducted the intensive observation from 22 June to 20 September in 2020 over the Seoul area. During the intensive observation period (IOP), the dropsonde from NIMS Atmospheric Research Aircraft (NARA) and the radiosonde from KMA research vessel Gisang1 were observed in the Yellow Sea, while, in the land, the radiosonde observation data were collected from Icheon and Incheon. Therefore, in this study, the effects of radiosonde and dropsonde data during the IOP were investigated by Observing System Experiment (OSE) based on Korean Integrated Model (KIM). We conducted two experiments: CTL assimilated the operational fifteen kinds of observations, and EXP assimilated not only operational observation data but also intensive observation data. Verifications over the Korean Peninsula area of two experiments were performed against analysis and observation data. The results showed that the predictability of short-range forecast (1~2 day) was improved for geopotential height at middle level and temperature at lower level. In three precipitation cases, EXP improved the distribution of precipitation against CTL. In typhoon cases, the predictability of EXP for typhoon track was better than CTL, although both experiments simulated weaker intensity as compared with the observed data.

Study on the Impact of Various Observations Data Assimilation on the Meteorological Predictions over Eastern Part of the Korean Peninsula (관측자료별 자료동화 성능이 한반도 동부 지역 기상 예보에 미치는 영향 분석 연구)

  • Kim, Ji-Seon;Lee, Soon-Hwan;Sohn, Keon-Tae
    • Journal of Environmental Science International
    • /
    • v.27 no.11
    • /
    • pp.1141-1154
    • /
    • 2018
  • Numerical experiments were carried out to investigate the effect of data assimilation of observational data on weather and PM (particulate matter) prediction. Observational data applied to numerical experiment are aircraft observation, satellite observation, upper level observation, and AWS (automatic weather system) data. In the case of grid nudging, the prediction performance of the meteorological field is largely improved compared with the case without data assimilations because the overall pressure distribution can be changed. So grid nudging effect can be significant when synoptic weather pattern strongly affects Korean Peninsula. Predictability of meteorological factors can be expected to improve through a number of observational data assimilation, but data assimilation by single data often occurred to be less predictive than without data assimilation. Variation of air pressure due to observation nudging with high prediction efficiency can improve prediction accuracy of whole model domain. However, in areas with complex terrain such as the eastern part of the Korean peninsula, the improvement due to grid nudging were only limited. In such cases, it would be more effective to aggregate assimilated data.

Benefits of the Next Generation Geostationary Meteorological Satellite Observation and Policy Plans for Expanding Satellite Data Application: Lessons from GOES-16 (차세대 정지궤도 기상위성관측의 편익과 활용 확대 방안: GOES-16에서 얻은 교훈)

  • Kim, Jiyoung;Jang, Kun-Il
    • Atmosphere
    • /
    • v.28 no.2
    • /
    • pp.201-209
    • /
    • 2018
  • Benefits of the next generation geostationary meteorological satellite observation (e.g., GEO-KOMPSAT-2A) are qualitatively and comprehensively described and discussed. Main beneficial phenomena for application can be listed as tropical cyclones (typhoon), high impact weather (heavy rainfall, lightning, and hail), ocean, air pollution (particulate matter), forest fire, fog, aircraft icing, volcanic eruption, and space weather. The next generation satellites with highly enhanced spatial and temporal resolution images, expanding channels, and basic and additional products are expected to create the new valuable benefits, including the contribution to the reduction of socioeconomic losses due to weather-related disasters. In particular, the new satellite observations are readily applicable to early warning and very-short time forecast application of hazardous weather phenomena, global climate change monitoring and adaptation, improvement of numerical weather forecast skill, and technical improvement of space weather monitoring and forecast. Several policy plans for expanding the application of the next generation satellite data are suggested.

Current Status and Future Direction of the NIMS/KMA Argo Program (국립기상과학원 Argo 사업의 현황 및 추진 방향)

  • Baek-Jo Kim;Hyeong-Jun Jo;KiRyong Kang;Chul-Kyu Lee
    • Atmosphere
    • /
    • v.33 no.5
    • /
    • pp.561-570
    • /
    • 2023
  • In order to improve the predictability of marine high-impacts weather such as typhoon and high waves, the marine observation network is an essential because it could be rapidly changed by strong air-sea interaction. In this regard, the National Institute of Meteorological Sciences, Korea Meteorological Administration (NIMS/KMA) has promoted the Argo float observation program since 2001 to participate in the International Argo program. In this study, current status and future direction of the NIMS/KMA Argo program are presented through the internal meeting and external expert forum. To date, a total of 264 Argo floats have been deployed into the offshore around the Korean Peninsula and the Northwestern Pacific Ocean. The real-time and delayed modes quality control (QC) system of Argo data was developed, and an official regional data assembling center (call-sign 'KM') was run. In 2002, the Argo homepage was established for the systematic management and dissemination of Argo data for domestic and international users. The future goal of the NIMS/KMA Argo program is to improve response to the marine high-impacts weather through a marine environment monitoring and observing system. The promotion strategy for this is divided into four areas: strengthening policy communication, developing observation strategies, promoting utilization research, and activating international cooperation.

Design of Lake Ecological Observation Data Management

  • Ahn, Bu-Young;Jung, Young-Jin;Lee, Myung-Sun;Jeong, Choong-Kyo;Kim, Bom-Chul
    • International Journal of Contents
    • /
    • v.7 no.1
    • /
    • pp.45-51
    • /
    • 2011
  • To protect water pollution and scarcity in lake and river, water quality monitoring applications have become important tools to understand the change of aquatic ecosystem. KLEON (Korean Lake Ecological Observatory Network) is designed to manage and share the ecological observations. The various kinds of water quality and phytoplankton observations are collected from the selected observatories such as seven lakes/rivers/wetlands. To deeply understand the collected observations with weather, KLEON also manages the observatory information such as lake, dam, floodgate, and weather. The accumulated observation and analyzed results are used to improve the water quality index of the observatories and encourage the ecologists' cooperation.

A Method for Correcting Air-Pressure Data Collected by Mini-AWS (소형 자동기상관측장비(Mini-AWS) 기압자료 보정 기법)

  • Ha, Ji-Hun;Kim, Yong-Hyuk;Im, Hyo-Hyuc;Choi, Deokwhan;Lee, Yong Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.3
    • /
    • pp.182-189
    • /
    • 2016
  • For high accuracy of forecast using numerical weather prediction models, we need to get weather observation data that are large and high dense. Korea Meteorological Administration (KMA) mantains Automatic Weather Stations (AWSs) to get weather observation data, but their installation and maintenance costs are high. Mini-AWS is a very compact automatic weather station that can measure and record temperature, humidity, and pressure. In contrast to AWS, costs of Mini-AWS's installation and maintenance are low. It also has a little space restraints for installing. So it is easier than AWS to install mini-AWS on places where we want to get weather observation data. But we cannot use the data observed from Mini-AWSs directly, because it can be affected by surrounding. In this paper, we suggest a correcting method for using pressure data observed from Mini-AWS as weather observation data. We carried out preconditioning process on pressure data from Mini-AWS. Then they were corrected by using machine learning methods with the aim of adjusting to pressure data of the AWS closest to them. Our experimental results showed that corrected pressure data are in regulation and our correcting method using SVR showed very good performance.

A Comparative Study of the Rainfall Intensity Between Ground Rain Gauge and Weather Radar (지상우량계와 기상레이더 강우강도의 비교연구)

  • Ryu, Chan-Su;Kang, In-Sook;Lim, Jae-Hwan
    • Journal of Integrative Natural Science
    • /
    • v.4 no.3
    • /
    • pp.229-237
    • /
    • 2011
  • Today they use a weather radar with spatially high resolution in predicting rainfall intensity and utilizing the information for super short-range forecast in order to make predictions of such severe meteorological phenomena as heavy rainfall and snow. For a weather radar, they use the Z-R relation between the reflectivity factor(Z) and rainfall intensity(R) by rainfall particles in the atmosphere in order to estimate intensity. Most used among the various Z-R relation is $Z=200R^{1.6}$ applied to stratiform rain. It's also used to estimate basic rainfall intensity of a weather radar run by the weather center. This study set out to compare rainfall intensity between the reflectivity of a weather radar and the ground rainfall of ASOS(Automatic Surface Observation System) by analyzing many different cases of heavy rain, analyze the errors of different weather radars and identify their problems, and investigate their applicability to nowcasting in case of severe weather.