DOI QR코드

DOI QR Code

Study on the Impact of Various Observations Data Assimilation on the Meteorological Predictions over Eastern Part of the Korean Peninsula

관측자료별 자료동화 성능이 한반도 동부 지역 기상 예보에 미치는 영향 분석 연구

  • Kim, Ji-Seon (Department of Earth Science, Pusan National University) ;
  • Lee, Soon-Hwan (Department of Earth Science Education, Pusan National University) ;
  • Sohn, Keon-Tae (Department of Statistics, Pusan National University)
  • 김지선 (부산대학교 지구과학과) ;
  • 이순환 (부산대학교 지구과학교육과) ;
  • 손건태 (부산대학교 통계학과)
  • Received : 2018.10.23
  • Accepted : 2018.11.23
  • Published : 2018.11.30

Abstract

Numerical experiments were carried out to investigate the effect of data assimilation of observational data on weather and PM (particulate matter) prediction. Observational data applied to numerical experiment are aircraft observation, satellite observation, upper level observation, and AWS (automatic weather system) data. In the case of grid nudging, the prediction performance of the meteorological field is largely improved compared with the case without data assimilations because the overall pressure distribution can be changed. So grid nudging effect can be significant when synoptic weather pattern strongly affects Korean Peninsula. Predictability of meteorological factors can be expected to improve through a number of observational data assimilation, but data assimilation by single data often occurred to be less predictive than without data assimilation. Variation of air pressure due to observation nudging with high prediction efficiency can improve prediction accuracy of whole model domain. However, in areas with complex terrain such as the eastern part of the Korean peninsula, the improvement due to grid nudging were only limited. In such cases, it would be more effective to aggregate assimilated data.

Keywords

References

  1. Bao, J. W., Michelson, S. A., Persson, P. O. G., Djalalova, I. V., Wilczak, J. M., 2008, Observed and WRF-Simulated low-level winds in a high-ozone episode during the Central California Ozone Study, J. Appl. Meteor. Climatol., 47, 2372-2394. https://doi.org/10.1175/2008JAMC1822.1
  2. Case, J. L., Crosson, W. L., Kumar, S. V., Lapenta, W. M., Peters-Lidard, C. D., 2008, Impacts of high-resolution land surface initialization on regional sensible weather forecasts from the WRF Model, J. Hydrometeor., 9, 1249-1266. https://doi.org/10.1175/2008JHM990.1
  3. Hong, S. Y., Y. Noh, J. Dudhia, 2006, A New vertical diffusion package with explicit treatment of entrainment processes, Mon. Wea. Rev., 134, 2318-2341. https://doi.org/10.1175/MWR3199.1
  4. Ide, K., Courtier, P., Ghil, M., Lorenc, A. C., 1997, Unified notation for data assimilation: Operational, sequential, and variational, J. Meteor. Soc. Japan, 75, 181-189. https://doi.org/10.2151/jmsj1965.75.1B_181
  5. Jeon, W., Choi, Y., Percell, P., Souri, A. H., Song, C. K., Kim, S. T., Kim, J., 2016, Computationally efficient air quality forecasting tool: implementation of STOPS v1.5 model into CMAQ v5.0.2 for a prediction of Asian dust. Geosci. Model Dev., 9, 3671-3684. https://doi.org/10.5194/gmd-9-3671-2016
  6. Li, X., Choi, Y., Czader, B., Roy, A., Kim, H., Lefer, B., Pan, S., 2016, The impact of observation nudging on simulated meteorology and ozone concentrations during DISCOVER-AQ 2013 Texas campaign, Atmos. Chem. Phys., 16, 3127-3144. https://doi.org/10.5194/acp-16-3127-2016
  7. Mathiesen, P., Collier, C., Kleissl, J., 2013, A High-resolution, cloud-assimilating numerical weather prediction model for solar irradiance forecasting, Sol. Energy, 92, 47-61. https://doi.org/10.1016/j.solener.2013.02.018
  8. Mishra, S. K., Srinivasan, J., 2010, Sensitivity of the simulated precipitation to changes in convective relaxation time scale, Ann. Geophys., 28,1827-1846. https://doi.org/10.5194/angeo-28-1827-2010
  9. Moreno, T., Querol, X., Alastuey, A., Reche, C., Cusack, M., Amato, F., Pandolfi, M., Pey, J., Richard, A., Prevot, A. S. H., Furger, M., Gibbons, W., 2011, Variations in time and space of trace metal aerosol concentrations in urban areas and their surroundings, Atmos. Chem. Phys., 11, 9415-9430. https://doi.org/10.5194/acp-11-9415-2011
  10. Racherla, P. N., Adams, P. J., 2006, Sensitivity of global tropospheric ozone and fine particulate matter concentrations to climate change, J. Geophys. Res., 111, D24103. https://doi.org/10.1029/2005JD006939
  11. Skamarock, W. C., Klemp, J. B., 2008, A Time-split nonhydrostatic atmospheric model for weather research and forecasting applications, J. Comput. Phys., 227, 3465-3485. https://doi.org/10.1016/j.jcp.2007.01.037
  12. Souri, A. H., Choi, Y. S., Li, X. S., Kotsakis, A., Jiang, X., 2016, A 15-year climatology of wind pattern impacts on surface ozone in Houston, Texas, Atmos. Res., 174-175, 124-134. https://doi.org/10.1016/j.atmosres.2016.02.007
  13. Stauffer, D. R., Seaman, N. L., 1994, Multiscale four -dimensional data assimilation, J. Appl. Meteor., 33, 416-434. https://doi.org/10.1175/1520-0450(1994)033<0416:MFDDA>2.0.CO;2
  14. Thishan Dharshana, K. G., Coowanitwong, N., 2008, Ambient $PM_{10}$ and respiratory illnesses in Colombo City, Sri Lanka, J. Environ. Sci. Health, 43, 1064-1070. https://doi.org/10.1080/10934520802060035
  15. Zhang, S. Q., Zupanski, M., Hou, A. Y., Lin, X., Cheung, S. H., 2013, Assimilation of precipitation-affected radiances in a cloud-resolving WRF ensemble data assimilation system. Mon. Wea. Rev., 141, 754-772. https://doi.org/10.1175/MWR-D-12-00055.1
  16. Zheng, Y., Alapaty, K., Herwehe, J. A., Genio, A. D. D., Niyogi, D., 2016, Improving high-resolution weather forecasts using the weather research and forecasting (WRF) model with an updated kain-fritsch scheme. Mon. Wea. Rev., 144, 833-860. https://doi.org/10.1175/MWR-D-15-0005.1