• Title/Summary/Keyword: Wearable Technology

Search Result 607, Processing Time 0.03 seconds

Development of wearable Range of Motion measurement device capable of dynamic measurement

  • Song, Seo Won;Lee, Minho;Kang, Min Soo
    • International journal of advanced smart convergence
    • /
    • v.8 no.4
    • /
    • pp.154-160
    • /
    • 2019
  • In this paper, we propose the miniaturization size of wearable Range of Motion(ROM) and a system that can be connected with smart devices in real-time to measure the joint movement range dynamically. Currently, the ROM of the joint is directly measured by a person using a goniometer. Conventional methods are different depending on the measurement method and location of the measurement person, which makes it difficult to measure consistently and may cause errors. Also, it is impossible to measure the ROM of joints in real-life situations. Therefore, the wearable sensor is attached to the joint to be measured to develop a miniaturize size ROM device that can measure the range of motion of the joint in real-time. The sensor measured the resistance value changed according to the movement of the joint using a load cell. Also, the sensed analog values were converted to digital values using an Analog to Digital Converter(ADC). The converted amount can be transmitted wireless to the smart device through the wearable sensor node. As a result, the developed device can be measured more consistently than the measurement using the goniometer, communication with IoT-based smart devices, and wearable enables dynamic observation. The developed wearable sensor node will be able to monitor the dynamic state of rehabilitation patients in real-time and improve the rapid change of treatment method and customized treatment.

Wearable Personal Network Based on Fabric Serial Bus Using Electrically Conductive Yarn

  • Lee, Hyung-Sun;Park, Choong-Bum;Noh, Kyoung-Ju;SunWoo, John;Choi, Hoon;Cho, Il-Yeon
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.713-721
    • /
    • 2010
  • E-textile technology has earned a great deal of interest in many fields; however, existing wearable network protocols are not optimized for use with conductive yarn. In this paper, some of the basic properties of conductive textiles and requirements on wearable personal area networks (PANs) are reviewed. Then, we present a wearable personal network (WPN), which is a four-layered wearable PAN using bus topology. We have designed the WPN to be a lightweight protocol to work with a variety of microcontrollers. The profile layer is provided to make the application development process easy. The data link layer exchanges frames in a master-slave manner in either the reliable or best-effort mode. The lower part of the data link layer and the physical layer of WPN are made of a fabric serial-bus interface which is capable of measuring bus signal properties and adapting to medium variation. After a formal verification of operation and performances of WPN, we implemented WPN communication modules (WCMs) on small flexible printed circuit boards. In order to demonstrate the behavior of our WPN on a textile, we designed a WPN tutorial shirt prototype using implemented WCMs and conductive yarn.

An Energy-Efficient MAC Protocol for Wireless Wearable Computer Systems

  • Beh, Jounghoon;Hur, Kyeong;Kim, Wooil;Joo, Yang-Ick
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.1
    • /
    • pp.7-11
    • /
    • 2013
  • Wearable computer systems use the wireless universal serial bus (WUSB), which refers to USB technology that is merged with WiMedia physical layer and medium access control layer (PHY/MAC) technical specifications. WUSB can be applied to wireless personal area network (WPAN) applications as well as wired USB applications such as PAN. WUSB specifications have defined high-speed connections between a WUSB host and WUSB devices for compatibility with USB 2.0 specifications. In this paper, we focus on an integrated system with a WUSB over an IEEE 802.15.6 wireless body area network (WBAN) for wireless wearable computer systems. Due to the portable and wearable nature of wearable computer systems, the WUSB over IEEE 802.15.6 hierarchical medium access control (MAC) protocol has to support power saving operations and integrate WUSB transactions with WBAN traffic efficiently. In this paper, we propose a low-power hibernation technique (LHT) for WUSB over IEEE 802.15.6 hierarchical MAC to improve its energy efficiency. Simulation results show that the LHT also integrates WUSB transactions and WBAN traffic efficiently while it achieves high energy efficiency.

A Study on Wearable Healthcare Device Adoption : An Integrated Approach of UTAUT2 and MIR (웨어러블 헬스케어 기기의 수용에 관한 연구: 확장된 통합기술수용모형과 혁신저항모형의 통합적 접근)

  • Jin, Seok;Ahn, Hyunchul
    • The Journal of Information Systems
    • /
    • v.28 no.3
    • /
    • pp.159-202
    • /
    • 2019
  • Purpose The purpose of this study is to explain users' wearable healthcare device adoption using performance expectancy, effort expectancy, the hedonic motivation and price value of UTAUT2, and to identify the causal relationship between intention to use wearable healthcare device and innovation resistance formed by perceived risks. Design/methodology/approach The research model proposed in this study is based on UTAUT2(Extended Unified Theory of Acceptance and Use of Technology) and MIR(Model of Innovation Resistance). In specific, performance expectancy, effort expectancy, hedonic motivation and price value of UTAUT2 and innovation resistance formed by perceived risks of MIR are adopted in our research model. To validate the research model, we carry out the analysis of the survey data using Smart PLS 3.0 to test the hypotheses. Findings According to the empirical analysis results, this study confirms that the performance expectancy, effort expectancy, hedonic motivation, and price value have significant effects on the intention to use wearable healthcare devices. It also finds that perceived risk affects innovation resistance and in turn, innovation resistance affects the intention to use wearable healthcare devices.

Wearable Wellness Sensors and Devices (WWSD): State of the Arts and Challenges (착용형 웰니스 센서 및 장치 관련 기술 응용 현황)

  • Ahn, Bummo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.2
    • /
    • pp.199-208
    • /
    • 2015
  • The aim of this paper is to review recent developments and commercialized products in the field of wearable wellness sensors and devices (WWSD). Although there are several dedicated researches, the completed theories and systematic techniques have not been well established. Therefore, we divided the WWSD into four different topics (healthcare, safety & prevention, gaming & lifestyle, and sports & fitness), and review the state of the arts and challenges on the applications on the sensor and device technologies with particular focus on WWSD. We also review the limitations of the current technologies on the developments and commercialized products. Finally, we suggest and discuss new research topics related on the four topics of the WWSD.

A Study on Monitoring of Health Care and Chronic Diseases for the elderly: the Effect of Wearable Device (고령자 만성질환 및 건강관리 모니터링에 관한 연구: 웨어러블 기기의 효과)

  • Lee, Jong-Sik;Lee, Kang-Nyeon
    • Journal of the Korea Knowledge Information Technology Society
    • /
    • v.13 no.3
    • /
    • pp.351-357
    • /
    • 2018
  • This study is on the elderly people's use and experience of a wearable device. By using wearable device, the elderly can monitor their health data at real time. As a result, their motivation for health care, exercise, and so on can improve and enhance. Across the globe, population aging becomes one of the most important problems in each nation. The social and economic burden from aging is one of most serious challenges to sustainability of the world and its economy, including South Korea. Information Communication Technology including wearable device can help the elderly health care improve. In 2016, the number of wearable devices is more than 19 million. Many of them are the devices related to health data monitoring. In the experiment, the authors measure real time health data from the subjects' wearable devices. In the first experiment day, subjects' average waist size was 36.29 inches. In the final experiment day, 31st day later from start of the experiment, the average waist size was 35.51 inches. At the beginning of the experiment, standard deviation was 1.93. At the final day of the experiment, it was 2.24. In regression analysis, when experiment day extends, average waist size seems to decrease. The trend is significant (t=2.719, p<0.05). That result may mean the subjects' motivation for health care improve. Wearable device can increase the elderly people's motivation for health care and exercise. As a result, their health can improve.

A Research for Removing ECG Noise and Transmitting 1-channel of 3-axis Accelerometer Signal in Wearable Sensor Node Based on WSN (무선센서네트워크 기반의 웨어러블 센서노드에서 3축 가속도 신호의 단채널 전송과 심전도 노이즈 제거에 대한 연구)

  • Lee, Seung-Chul;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.137-144
    • /
    • 2011
  • Wireless sensor network(WSN) has the potential to greatly effect many aspects of u-healthcare. By outfitting the potential with WSN, wearable sensor node can collects real-time data on physiological status and transmits through base station to server PC. However, there is a significant gap between WSN and healthcare. WSN has the limited resource about computing capability and data transmission according to bio-sensor sampling rates and channels to apply healthcare system. If a wearable node transmits ECG and accelerometer data of 4 channel sampled at 100 Hz, these data may occur high loss packets for transmitting human activity and ECG to server PC. Therefore current wearable sensor nodes have to solve above mentioned problems to be suited for u-healthcare system. Most WSN based activity and ECG monitoring system have been implemented some algorithms which are applied for signal vector magnitude(SVM) algorithm and ECG noise algorithm in server PC. In this paper, A wearable sensor node using integrated ECG and 3-axial accelerometer based on wireless sensor network is designed and developed. It can form multi-hop network with relay nodes to extend network range in WSN. Our wearable nodes can transmit 1-channel activity data processed activity classification data vector using SVM algorithm to 3-channel accelerometer data. ECG signals are contaminated with high frequency noise such as power line interference and muscle artifact. Our wearable sensor nodes can remove high frequency noise to clear original ECG signal for healthcare monitoring.

Study on Visual Communication Design of Wearable Computing Devices (웨어러블 컴퓨팅 디바이스를 이용한 시각 디자인 구현 및 연구)

  • Lee, Su Jin
    • Korea Science and Art Forum
    • /
    • v.34
    • /
    • pp.251-262
    • /
    • 2018
  • The purpose of this study is to understand how wearable computing devices are designed and how to design them in a technology based wearable device design research. Research is premised on the consideration of producers and consumers. There is wearable computer of eyeglasses, watches, clothes, and so on. The user can always wear these products comfort and use as part of the body without any sense of discomfort, and the goal is to supplement or double the ability of the human being. It should be easy to use them convenient, wear comfortable, safe and sociable at any time. For the satisfaction these conditions, the wearable computing devices have several factors. There are technical performances, visual aesthetics, Human body system and devices communication and safety. Furthermore, these factors have to match to operating system, real-time operating system and applied software. To comprehend wearable computing devices should be offered the design of the both software and hardware designed.

Analysis and Design of Planar Textile Resonator for Wearable Magnetic Resonance-Wireless Power Transfer (의복용 자기공진형 무선전력전송 시스템을 위한 평면형 직물공진기의 설계 및 연구)

  • Kang, Seok Hyon;Jung, Chang Won
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.8
    • /
    • pp.119-126
    • /
    • 2016
  • In this paper, we proposed the planar textile resonator for constructing wearable MR-WPT system and analyzed the characteristic of textile substrates used in resonators. The planar textile resonators were designed to resonate at 1-10 MHz. The loop and coil were fabricated planar structure on textile substrate using conductive materials. Polyester fiber and cotton widely used in real life were chosen as textile resonators for wearable applications and copper tape and silver paste were used for fabricating planar loop and coil on textile substrate. For comparison analysis on transfer efficiency according to the types of textile, transmitter and receiver parts were symmetric. According to the result, for the highest transfer efficiency of wearable WPT system, the planar resonators have specifications of relative thick textile substrate with low permittivity and low surface resistance of conductive pattern. The performed experiments show that the planar textile resonator is possible to be used for resonator in wearable MR-WPT system.

User Motion Recognition Healthcare System Using Smart-Band (스마트밴드를 이용한 사용자 모션인식 헬스 케어 시스템 구현)

  • Park, Jin-Tae;Hwang, Hyun-Seo;Yun, Jun-Soo;Park, Gyung-Soo;Moon, Il-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.6
    • /
    • pp.619-624
    • /
    • 2014
  • Nowadays there are various smart devices and development with the development of smart phones and that can be attached to the human body wearable computing device has been in the spotlight. In this paper, we proceeded developing wearable devices in watch type which can detect user's movement and developing a system which connects the wearable devices to smart TVs, or smart phones so that users can save and manage their physical information in those devices. Health care wearable devices already existing save information by connecting their systems to smart phones. And, smart TV health applications usually include motion detecting systems using cameras. However, there is a limit when connecting smart phone systems to different devices from various companies. Also, in case of smart TV, because some devices may not have cameras, there can be a limit for users who wants to connect their devices to smart TVs. Wearable device and user information collected by using the smart phone and when it is possible to exercise and manage anywhere. This information can also be confirmed by the smart TV applications. By using this system will be able to take advantage of the study of the behavior of the future work of the user more accurately be measured in recognition technology and other devices.