• Title/Summary/Keyword: Wear-resistant

Search Result 193, Processing Time 0.023 seconds

The Effect of Spacer on Microclimate and Comfort Sensation in Protective Clothing for Firefighters

  • Chung, Gi-Soo;Lee, Dae-Hoon
    • Fashion & Textile Research Journal
    • /
    • v.4 no.6
    • /
    • pp.564-566
    • /
    • 2002
  • Protective clothing for firefighters typically consists of a flame resistant outer shell and inner layers. The inner layers are generally composed of a moisture barrier and a thermal barrier. On performing the task in fire place the heat and perspiration generated from the body become trapped inside the protective clothing. Those heat and moisture result into heat-stress and physical fatigue of fire fighter, which hinder the work. Therefore, the system of clothing designs and material layers must be chosen carefully to balance protection and comfort. 3 kinds of protective clothing of 3 layer structure were used in the experiment of physiological comfort. From the comparison of wear trials with the 3 kinds of layers in firefighters clothing, it indicates that the moisture dissipation of A+B2+C was highest, following A+BI+C andA+B3+C. And the heat dissipation of A+BI+C and A+B2+C were better than A+B3+C. In the protective clothing with A+B3+C, heat and perspiration generated through exercise remained in clothing system long and caused discomfort.

Effects of Mo on the Microstructure and Hardness in High Chromium Cast Irons (Mo가 고크롬주철의 조직 및 경도에 미치는 영향)

  • Yu, Sung-Kon
    • Journal of Korea Foundry Society
    • /
    • v.16 no.2
    • /
    • pp.141-148
    • /
    • 1996
  • In high chromium cast iron, the control of matrix microstructure as well as carbide structure is important to the performance as a wear resistant material. In this study, 3.0% C-24.0% Cr white cast irons with various molybdenum contents(residual, 1.0%, 3.0% and 5.0%) were solidified conventionally and unidirectionally for studying their effects on the microstructure and hardness. In the conventional casting, two sets of castings were poured from each melt. One set of the castings consisted of cylindrical bars of 10 and 20mm by 155mm long. The second set of the castings was a cylindrical bar of 30mm by 200mm long. On the other hand, a pep-set mold set on the Cu plate was employed to make the solidification unidirectionally. X-ray diffraction method was used to observe retained austenite and carbides in the high chromium cast iron. The morphology of eutectic $M_7C_3$ carbides changed from needle-like type to nodular type with the increase of Mo content. And, the presence of $M_2C$ carbides was identified in the sample where Mo was added over 3.0 %. Primary and eutectic carbides appeared as rod type and corngrain type, respectively in the unidirectionally solidified samples which were cut to parallel to the solidification direction. In the EDX analysis, Cr concentration was higher in the primary and eutectic $M_7C_3$ carbides, Mo in the $M_2C$ carbides, and Fe in the matrix.

  • PDF

A Study on Characterization of Modified Surface Manufactured by PTA Spray (PTA 용사에 의해 제조된 표면개질부의 특성에 관한 연구)

  • Kim, Gwang-Soo;Ji, Jung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.2
    • /
    • pp.110-115
    • /
    • 2005
  • Plasma Transferred Arc Spray process was used to make modified surface for wear and corrosion resistant by using Co system powder type alloy. The modified surface was produced by changing only spray current and other process variables were constant. The current range was from 80 amp to 140 amp as inclosing 20 amp. It was appeared that the geometrical shape, microstructures and microhardness of the modified surface were affected by the different cooling rate of base metal. The modified surface that produced by 120 amp current exhibited the fine microstructure and the highest microhardness number impling good surface characteristics. It was also found that the spray current affected the width but not the height of the bead as increasing current.

  • PDF

The Study on the Cavitation Erosion Behavior of Hardfacing Alloys for Nuclear Power Plants (원전 밸브용 경면처리 합금의 캐비테이션 에로젼 (cavitation erosion) 거동에 관한 연구)

  • O, Yeong-Min;Kim, Yun-Gap;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.12 no.4
    • /
    • pp.308-316
    • /
    • 2002
  • The cavitation erosion behavior of wear-resistant hardfacing alloys such as Co-base Stellite 6, Fe-base Norem 02 and new Fe-base alloy were investigated up to 50 hours by using a 20kHz vibratory cavitation erosion test equipment. The crack, initiated easily at the interfaces between matrix and hard second phase, was repressed effectively in Stellite 6 because the matrix was hardened by phase transformation. For this reason, Stellite 6 showed an excellent cavitation erosion resistance compared to Norem 02. The phase transformation also occurred in Norem 02, but the increase of volume fraction of the interfaces caused the crack to be initiated frequently, thus resulting in a 1arge material loss. The matrix of NewAlloy was hardened effectively by vlongrightarrow$\alpha$' phase transformation and the volume fraction of the interfaces was very small compared to Norem 02. This caused the propagation of crack to the matrix to be repressed effectively. Therefore, NewAlloy showed a very excellent cavitation erosion resistance. It wasn't considered that the cavitation erosion resistance of NewAlloy was influenced the temperature of the bath filled with a distilled water up to $80^{\circ}C$.

Changing PEO coating formation on Mg alloys by particle additions to the treatment electrolyte

  • Blawert, Carsten;Srinivasan, Bala;Liang, Jun;Huang, Yuanding;Hoche, Daniel;Scharnagl, Nico;Heitmann, Volker;Burmester, Ulrich
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.7-11
    • /
    • 2012
  • Plasma electrolytic oxidation of magnesium alloys is a well known technique to produce corrosion and wear resistant coatings. The addition of particles to the electrolyte provides a possibility to produce coatings with an increasing range of composition by in-situ incorporation of those particles into the coating. An extensive literature review has revealed that the mode of incorporation depends mainly on the melting point of the used particles and the energy provided by the discharges of the PEO process. The spectrum ranges from inert to partly reactive incorporation, but a complete reactive incorporation and a formation of a new single phase coating was not observed so far. Thus a new approach in PEO processing is introduced using specific particles as a kind of sintering additive, changing not only the composition but lowering the melting temperature and increase the liquid phase fraction during the discharges, resulting in a new amorphous coating.

  • PDF

Effect of Additives on the Hardness of Copper Electrodeposits in Acidic Sulfate Electrolyte (황산구리 전착에서의 첨가제가 구리전착층의 경도에 미치는 영향)

  • Min, Sung-Ki;Lee, Jeong-Ja;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.143-150
    • /
    • 2011
  • Copper electroplating has been applied to various fields such as decorative plating and through-hole plating. Technical realization of high strength copper preplating for wear-resistant tools and molds in addition to these applications is the aim of this work. Brighters and levelers, such as MPSA, Gelatin, Thiourea, PEG and JGB, were added in copper sulfate electrolyte, and the effects of these organic additives on the hardness were evaluated. All additives in this work were effective in increasing the hardness of copper electrodeposits. Thiourea increased the hardness up to 350 VHN, and was the most effective accelarator in sulfate electrolyte. It was shown from the X-ray diffraction analysis that preferred orientation changed from (200) to (111) with increasing concentration of organic additives. Crystallite size decreased with increasing concentration of additive. Hardness was increased with decreasing crystallite size, and this result is consistent with Hall-Petch relationship, and it was apparent that the hardening of copper electrodeposits results from the grain refining effect.

Laser Assisted Surface Alloying of Cast Iron with Thermal Sprayed Titanium Coatings (티타늄 용사피막을 이용한 주철의 레이저 표면합금화)

  • Park, Heung-Il;Kim, Sung-Gyoo;Lee, Byung-Woo
    • Journal of Korea Foundry Society
    • /
    • v.17 no.4
    • /
    • pp.393-401
    • /
    • 1997
  • Commercial flake graphite cast iron substrate was coated with titanium powder by low pressure plasma spraying and was irradiated with a $CO_2$ laser to produce the wear resistant composite layer. From the experimental results of this study, it was possible to composite TiC particles on the surface layer by direct reaction between carbon existed in the cast iron matrix and titanium with thermal sprayed coating by remelting and alloying them using laser irradiation. The cooling rate of laser remelted cast iron substrate without titanium coating was about $1{\times}10^4$ K/s to $1{\times}10^5$ K/s in the order under the condition used in this study. The microstructure of alloyed layer consisted of three zones, that is, TiC particule crystallized zone (MHV $400{\sim}500$), the mixed zone of TiC particule+ledebulite (MHV $650{\sim}900$) and the ledebulite zone (MHV $500{\sim}700$). TiC particules were crystallized as a typical dendritic morphology. The secondary TiC dendrite arms were grown to the polygonized shape and were necking. And then the separated arms became cubic crystal of TiC at the slowly solidified zone. But in the rapidly solidified zone of fusion boundry, the fine granular TiC particules were grouped like grape.

  • PDF

Hardness and adhesion of the reactively sputtered Zr-ZrN on the stainless steel(SUS304) and tool steel(SKH9) (스테인레스와 공구강 위에 스퍼터링된 Zr-ZrN 코팅층의 경도 및 밀착성에 대한 연구)

  • 예길촌;신현준;권식철;백원승
    • Journal of the Korean institute of surface engineering
    • /
    • v.26 no.6
    • /
    • pp.316-326
    • /
    • 1993
  • Adhesion and hardeness are the most important properties of a hard coated layer which is applied to wear-resistant devices. Zr/ZrN layer was deposited on tool steel(SKH9) and stainless steel(SUS304) by a re-active D.C. magnetron sputtering technique and their microhardness and adhesion strength were measured for the films processed by changing the partial pressures of $N_2$ gas (4~10$\times$$10^{-4}$mbar) and the substrate bias voltage(0~250V). The adhesion strength was evaluated by acoustic signals through the scratch-test with the incremental applied load. As the partial pressure of $N_2$ gas and the substrate bias voltage were increased, the adhesion strength of tool steel was observed to be stronger than that of the stainless steel. The adhesion strength was generally, observed to decrease with the same tendency regardless of the kinds of substrates. The adhesion strength of tool steel was increased more and more strongly than that of stainless steel as heat-treated temperature was increased. The strength of tool steel was appeared to be high adhesion strength at $400^{\circ}C$. From the failure mode of the film during the scratch adhesion test, the cohesive failure was observed to be obvious and the adhesive failure in a minor portion in the Zr/ZrN doublelayer regardless of the kinds of substrates.

  • PDF

Corrosion Resistance and Low Friction Property of Sintered Steel Parts via Chromizing Treatment (크로마이징 처리 된 철계 소결 부품의 내식성 및 저 마찰특성)

  • Kim, Sang-Gweon;Park, Yong-Jin;Yeo, Kuk-Hyun;Lee, Jae-Hoon
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.11
    • /
    • pp.809-815
    • /
    • 2012
  • Recently, as the interest in improving energy efficiency has grown, the demand for vehicle and machine parts that are resistant in high temperature corrosive conditions and abrasive environments has increased. Pack chromizing treatment of sintered steels is a profitable method that satisfies both corrosion resistance and low friction properties. Since austenitic stainless steels have good corrosion resistance but low mechanical hardness, if they are replaced by sintered steel parts with pack chromizing treatment, all the desirable properties such as low price, easy molding, high hardness, low frictional coefficient, and high corrosion resistance, can be obtained. The higher corrosion resistance of the chromized parts over that of the austenitic stainless steels was acquired by coating chromium carbides and a thin chromium oxides layer on the surface. Moreover, the surface morphology of chromized parts, which were composed of chromium rich phases and hardened chromium carbides by diffusing and alloying, had a peak-and-valley shape so that the dimple effect by the wrinkled morphology and high hardness induced a low friction coefficient.

Control of Crowning Using Residual Stress induced by the Difference of Tehermal Expansion Between Ceramic and Carbon Steel in Ceramic Cam Follower (열팽창계수차에 기인된 잔류응력을 이용한 세라믹 캠 팔로우어의 크라우닝 제어)

  • Choe, Yeong-Min;Lee, Jae-Do;No, Gwang-Su
    • Korean Journal of Materials Research
    • /
    • v.10 no.10
    • /
    • pp.703-708
    • /
    • 2000
  • As the engine design changes to get high efficiency and performance of commercial diesel engine, surface w wear of the earn follower becomes an important issue as applied load increasing at the contact face between cam follower and cam. We developed the ceramic cam follower made of sili$\infty$n nitride ceramic which was more wear resistant than the cast iron or sintered metal cam follower. Ceramic cam follower was made by direct brazing of thin ceramic disk to steel body using an active brazing alloy without the interlayer. In-situ crowning(R), resulted from the difference of thermal expansion coefficient between ceramic and carbon steel after direct brazing without any stress-relieving inter]ayer, could be controlled. When a earbon steel was heated above $A_{c1}$ point and then c$\infty$led, the expansion curve represented a hysteresis. Appropriate crowning was achieved below the $A_{c1}$ point(about $723^{\circ}C$) and crowning increased with brazing temperature exponentially above the $A_{c1}$ point. Optimum brazing temperature range was from 700 to $720^{\circ}C$. We developed successfully the ceramic cam follower having appropriate crowning and being inexpensive. Also we could successfully control the crowning of ceramic earn follower by hysteresis behavior of thermal expansion of earbon steel during direct brazing process.

  • PDF