• Title/Summary/Keyword: Wear-resistance

Search Result 1,359, Processing Time 0.024 seconds

Wear Resistance of c-BN Surface Modified 316L Austenitic Stainless Steel by R.F. Sputtering (R.F. sputtering 방법에 의해 c-BN 표면처리된 316L 오스테나이트계 스테인리스 강의 내마모특성 향상)

  • Lee, Kwang-Min;Jeong, Se-Hoon;Park, Sung-Tae
    • Korean Journal of Materials Research
    • /
    • v.20 no.4
    • /
    • pp.194-198
    • /
    • 2010
  • Cubic boron nitride (c-BN) is a promising material for use in many potential applications because of its outstanding physical properties such as high thermal stability, high abrasive wear resistance, and super hardness. Even though 316L austenitic stainless steel (STS) has poor wear resistance causing it to be toxic in the body due to wear and material chips, 316L STS has been used for implant biomaterials in orthopedics due to its good corrosion resistance and mechanical properties. Therefore, in the present study, c-BN films with a $B_4C$ layer were applied to a 316L STS specimen in order to improve its wear resistance. The deposition of the c-BN films was performed using an r.f. (13.56 MHz) magnetron sputtering system with a $B_4C$ target. The coating layers were characterized using XPS and SEM, and the mechanical properties were investigated using a nanoindenter. The friction coefficient of the c-BN coated 316L STS steel was obtained using a pin-on-disk according to the ASTM G163-99. The thickness of the obtained c-BN and $B_4C$ were about 220 nm and 630 nm, respectively. The high resolution XPS spectra analysis of B1s and N1s revealed that the c-BN film was mainly composed of $sp^3$ BN bonds. The hardness and elastic modulus of the c-BN measured by the nanoindenter were 46.8 GPa and 345.7 GPa, respectively. The friction coefficient of the c-BN coated 316L STS was decreased from 3.5 to 1.6. The wear property of the c-BN coated 316L STS was enhanced by a factor of two.

In vitro evaluation of a removable partial denture framework using multi-directionally forged titanium

  • Suzuki, Ginga;Shimizu, Satoshi;Torii, Mana;Tokue, Ai;Ying, Guo;Yoshinari, Masao;Hoshi, Noriyuki;Kimoto, Katsuhiko;Miura, Hiromi;Hayakawa, Tohru;Ohkubo, Chikahiro
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.6
    • /
    • pp.369-375
    • /
    • 2020
  • PURPOSE. This study evaluated the availability of multi-directionally forged (MDF) titanium (Ti) as a component of removable partial dentures (RPDs). MDF-Ti remarkably improved the mechanical properties of RPDs due to its ultrafine-grained structure. MATERIALS AND METHODS. The wear resistance, plaque adhesion, and machinability of MDF-Ti were tested. As controls, commercially pure (CP) titanium was used for wear, plaque adhesion, and machinability tests. For wear resistance, the volume losses of the titanium teeth before and after wear tests were evaluated. Plaque adhesion was evaluated by the assay of Streptococcus mutans. In the machinability test, samples were cut and ground by a steel fissure bur and carborundum (SiC) point. An unpaired t-test was employed for the analysis of the significant differences between MDF-Ti and the control in the results for each test. RESULTS. Wear resistance and plaque adherence of MDF-Ti similar to those of CP-Ti (P>.05) were indicated. MDF-Ti exhibited significantly larger volume loss than CP-Ti in all conditions except 100/30,000 g/rpm in machinability tests (P<.05). CONCLUSION. Although the wear resistance and plaque adherence of MDF-Ti were comparable to those of controls, MDF-Ti showed better machinability than did CP-Ti. MDF-Ti could be used as a framework material for RPDs.

Improved Coating Process for Enhanced Wear Resistance of CrAl Coated Claddings for Accident Tolerant Fuel (공정 개선에 따른 사고저항성 CrAl 코팅 피복관의 내마모성 향상)

  • Kim, Sung Eun;Lee, Young-Ho;Kim, Dae Ho;Kim, Hyun-Gil
    • Tribology and Lubricants
    • /
    • v.38 no.4
    • /
    • pp.136-142
    • /
    • 2022
  • This paper investigates the enhanced wear performance of a CrAl coated accident tolerant fuel (ATF) cladding. In the wake of the Fukushima accident, extensive research on ATF with respect to improving the oxidation resistance of cladding materials is ongoing. Since coated Zr claddings can be applied without major changes to the criteria for reactor core design, many researchers are studying coatings for claddings. To improve the quality of the CrAl coating layer, optimization of the manufacturing process is imperative. This study employs arc ion plating to obtain improved CrAl coated claddings using CrAl binary alloy targets through an improved coating method. Surface roughness and adhesion are improved, and droplets are reduced. Furthermore, the coated layer has a dense and fine microstructure. In scratch tests, all the tested CrAl coated claddings exhibit a superior resistance compared to the Zr cladding. In a fretting wear test, the wear volume of the CrAl coated claddings is smaller compared to the Zr cladding. Furthermore, the coated cladding manufactured through the improved process exhibits better wear resistance than other CrAl coated claddings. Based on these results, we suggest that fine microstructure is attributed to a mechanically and microstructurally robust CrAl coating layer, which enhances wear resistance.

Tribological properties of the brake friction materials without environmentally regulated ingredients (친환경 규제 원료를 제거한 마찰재의 마찰 특성에 관한 연구)

  • Lim, Se-Eun;Lee, Wan-Gyu;Shin, Min-Wook;Jang, Ho
    • Tribology and Lubricants
    • /
    • v.26 no.4
    • /
    • pp.246-253
    • /
    • 2010
  • Friction characteristics of the brake friction materials without environmentally regulated ingredients were examined to find their role in the brake performance. Five friction materials were produced based on a nearcommercial formulation by changing the relative amount of potentially hazardous ingredients to health and environment, such as $Sb_2S_3$, potassium titanate, and brass fiber. Tribological properties of the friction materials were obtained using a scale dynamometer and Krauss type tribometer. Results showed that the excluded three ingredients played important synergetic effects on tribological properties in terms of fade resistance, wear resistance and friction effectiveness. In particular, brass fibers played important roles in the friction stability by providing excellent thermal diffusivity at the friction interface. Potassium titanate whiskers showed excellent fade resistance and wear resistance compared to the substituted barite. Antimony trisulfide, on the other hand, showed little effect on the high temperature fade resistance and wear resistance, while it increased friction effectiveness at moderate temperatures. The friction materials without the three ingredients showed severe fade, indicating antisynergy effects.

Evaluation of the Characteristics of the Aluminum Alloy Casting Material by Heat Treatment (AC8A 알루미늄합금 주조재의 열처리에 의한 특성 평가)

  • Lee, Syung Yul;Park, Dong Hyun;Won, Jong Pil;Kim, Yun Hae;Lee, Myung Hoon;Moon, Kyung Man;Jeong, Jae Hyun
    • Corrosion Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.280-285
    • /
    • 2012
  • Aluminum is on active metal, but it is well known that its oxide film plays a role as protective barrier which is comparatively stable in air and neutral aqueous solution. Thus, aluminum alloys have been widely applied in architectural trim, cold & hot-water storage vessels and piping etc., furthermore, the aluminum alloy of AC8A have been widely used in mold casting material of engine piston because of its properties of temperature and wear resistance. In recent years, the oil price is getting higher and higher, thus the using of low quality oil has been significantly increased in engines of ship and vehicle. Therefore it is considered that evaluation of corrosion resistance as well as wear resistance of AC8A material is also important to improve its property and prolong its lifetime. In this study, the effect of solution and tempering heat treatment to corrosion and wear resistance is investigated with electrochemical method and measurement of hardness. The hardness decreased with solution heat treatment compared to mold casting condition, but its value increased with tempering heat treatment and exhibited the highest value of hardness with tempering heat treatment temperature at $190^{\circ}C$ for 24hrs. Furthermore, corrosion resistance increased with decreasing of the hardness, and decreased with increasing of the hardness reversely. As a result, it is suggested that the optimum heat treatment to improve both corrosion and wear resistance is tempering heat treatment temperature at $190^{\circ}C$ for 16hrs.

The Characteristics of Frictional Behavior, Wear and Corrosion Resistance of Textured TiN Coated Layer (TiN 코팅층 집합조직의 변화에 따른 마찰, 마멸과 내부식 특성)

  • 김희동;김인수;성동영;이민구
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.99-104
    • /
    • 2003
  • TiN coated films show a good mechanical properties, high thermal properties and wear, erosion and corrosion resistance and are widely used as a coating materials in tools, ornaments, parts and semiconductors. In spite of these good properties, the fracture of TiN coated films occur during use. The fracture of TiN thin films is related to their microstructure. Especially, the life of TiN coated layer is related to the texture of the TiN films. One researcher suggested that the corrosion and erosion resistance of the TiN thin films is related to a uniform and dense structure of films. In this study, we studied the relationships between textures and friction coefficient, erosion and corrosion in TiN coated films. The flatness of (115) texture surface of TiN thin films is flatter than that of (111) texture surface. The friction coefficient of (115) texture surface of TiN thin films is similar with that of (111) texture surface. The wear resistance of (115) texture surface of TiN thin films is better than that of (111) texture surface. The erosion and corrosion resistance of (115) texture surface of TiN thin films is better than that of (111) torture surface. As well as texture, the wear, erosion and corrosion of TiN thin films has to consider defects such as pinholes, cracks, surface roughness and open columnar structure. The life of TiN coated products is influenced by the properties of wear, erosion, and corrosion resistance of TiN thin films and is related to texture of TiN coated films, density of pinholes and cracks, density of structure, and surface flatness.

  • PDF

Lubricated Wear Properties of Hybrid Metal Matrix Composites (하이브리드 금속복합재료의 윤활마모특성)

  • Fu, Hui-hui;Bae, Sung-in;Ham, Kyung-chun;Song, Jung-il
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.135-138
    • /
    • 2002
  • The purpose of this study is to investigate the lubricated wear properties of Saffil/Al, Saffil/$Al_2O_3/Al$ and Saffil/SiC/Al hybrid metal matrix composites fabricated by squeeze casting method. Wear tests were done on a pin-on-disk friction & wear tester with long sliding distance. The wear properties of the three composites were evaluated in many respects. The effects of Saffil, $Al_2O_3$ particles and SiC particles on the wear behavior of the composites under lubricated conditions were elucidated. Wear mechanisms were analyzed by observing the worn surfaces of the composites. The variation of coefficient of friction (COF) during the wear process was recorded by using a computer. Comparing with the dry sliding condition, all three composites showed excellent wear resistance when lubricated by liquid paraffin. Under intermediate load, Saffil/Al showed best wear resistance among them, and its COF value is the smallest. The dominant wear mechanism of the composites was microploughing, but microcracking also occurred for them to different extent.

  • PDF

A Study on the Wear Characteristics of SiC Particle Dispersed Composites by Rheo-Compocasting Method (Rheo-compocasting법에 의한 SiC입자분산 복합재료의 마모특성에 관한 연구)

  • Kwak, Hyun-Man;Choi, Chang-Ock
    • Journal of Korea Foundry Society
    • /
    • v.13 no.3
    • /
    • pp.238-247
    • /
    • 1993
  • Microstructure, hardness and wear characteristics of $SiC_p/Al-6.5wt%Si-1.7wt%Mg$ alloy composites fabricated by the method of rheo-compocasting and hot pressing are investigated in this study. The dispersion of SiC particles in the composites is homogeneous and the hardness improves as additional amount increases. The wear amount of the matrix metal increases highly as wear rates increase, for the wear mechanism changes from adhesive wear to melt wear, and the matrix metal was coated on the surface of revolving disc and its weight increases. In the 5vol% composites, Fe is adhered on the surface of specimen by the projection of the dispersed hard SiC particles which have net-work structure and the coating layer is about $300{\mu}m$. But in the composite more than 20vol%, the wear amount of composite decreases because the SiC particles which have superior hardness, wear resistance and heat resistance properties resist wear, the abrasive wear turn out predominant wear mechanism and so the wear amount of revolving disc increases.

  • PDF

Surface-modified Nanoparticle Additives for Wear Resistant Water-based Coatings for Galvanized Steel Plates

  • Becker-Willinger, Carsten;Heppe, Gisela;Opsoelder, Michael;Veith, H.C. Michael;Cho, Jae-Dong;Lee, Jae-Ryung
    • Corrosion Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.147-152
    • /
    • 2010
  • Conventional paints for conversion coating applications in steel production derived mainly from water-based polymer dispersions containing several additives actually show good general performance, but suffer from poor scratch and abrasion resistance during use. The reason for this is because the relatively soft organic binder matrix dominates the mechanical surface properties. In order to maintain the high quality and decorative function of coated steel sheets, the mechanical performance of the surface needs to be improved significantly. In fact the wear resistance should be enhanced without affecting the optical appearance of the coatings by using appropriate nanoparticulate additives. In this direction, nanocomposite coating compositions (Nanomer$^{(R)}$) have been derived from water-based polymer dispersions with an increasing amount of surface-modified nanoparticles in aqueous dispersion in order to monitor the effect of degree of filling with rigid nanoparticles. The surface of nanoparticles has been modified for optimum compatibility with the polymer matrix in order to achieve homogeneous nanoparticle dispersion over the matrix. This approach has been extended in such a way that a more expanded hybrid network has been condensed on the nanoparticle surface by a hydrolytic condensation reaction in addition to the quasi-monolayer type small molecular surface modification. It was expected that this additional modification will lead to more intensive cross-linking in coating systems resulting in further improved scratch-resistance compared to simple addition of nanoparticles with quasi-monolayer surface modification. The resulting compositions have been coated on zinc-galvanized steel and cured. The wear resistance and the corrosion protection of the modified coating systems have been tested in dependence on the compositional change, the type of surface modification as well as the mixing conditions with different shear forces. It has been found out that for loading levels up to 50 wt.-% nanoparticles, the mechanical wear resistance remains almost unaffected compared to the unmodified resin. In addition, the corrosion resistance remained unaffected even after $180^{\circ}$ bending test showing that the flexibility of coating was not decreased by nanoparticle addition. Electron microscopy showed that the inorganic nanoparticles do not penetrate into the organic resin droplets during the mixing process but rather formed agglomerates outside the polymer droplet phase resulting in quite moderate cross linking while curing, because of viscosity. The proposed mechanisms of composite formation and cross linking could explain the poor effect regarding improvement of mechanical wear resistance and help to set up new synthesis strategies for improved nanocomposite morphologies, which should provide increased wear resistance.

The Effect of Heat treating Conditions on Wear Characteristics of High Speed Steel by Powder Metallurgy (분말고속도공구강의 미끄럼마모특성에 미치는 열처리조건의 영향)

  • 이한영;노정균;배종수;김용진
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.48-53
    • /
    • 2000
  • The effects of added elements, such as Co or Nb, on wear properties of high speed steel by powder metallurgy(PM-HSS) had been evaluated in previous paper. The wear properties of materials, in fact, have been a]so influenced by heat-treating conditions. In this paper, the effects of heat-treating conditions on wear properties of PM-HSS have been evaluated. The wear tests have been performed as same conditions as previous paper using PM-HSS(5%Co-1%Nb) heat-treated under different quenching and tempering temperature. The result of this paper shows that wear resistance of PM-HSS is improved with relatively high quenching temperature. However tempering temperature is not sensitve to the wear resistance in range of high quenching temperature. It may be deduced by the fact that the shear strength of matrix by strengthening mechanisms of quenching aging in addition to dispersion-hardening is improved.

  • PDF