• Title/Summary/Keyword: Weak Monotone

Search Result 22, Processing Time 0.016 seconds

SOLVABILITY OF NONLINEAR ELLIPTIC TYPE EQUATION WITH TWO UNRELATED NON STANDARD GROWTHS

  • Sert, Ugur;Soltanov, Kamal
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1337-1358
    • /
    • 2018
  • In this paper, we study the solvability of the nonlinear Dirichlet problem with sum of the operators of independent non standard growths $$-div\({\mid}{\nabla}u{\mid}^{p_1(x)-2}{\nabla}u\)-\sum\limits^n_{i=1}D_i\({\mid}u{\mid}^{p_0(x)-2}D_iu\)+c(x,u)=h(x),\;{\in}{\Omega}$$ in a bounded domain ${\Omega}{\subset}{\mathbb{R}}^n$. Here, one of the operators in the sum is monotone and the other is weakly compact. We obtain sufficient conditions and show the existence of weak solutions of the considered problem by using monotonicity and compactness methods together.

Choquet integrals and interval-valued necessity measures (쇼케이 적분과 구간치 필요측도)

  • Jang, Lee-Chae;Kim, Tae-Kyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.4
    • /
    • pp.499-503
    • /
    • 2009
  • Y. R$\acute{e}$ball$\acute{e}$ [11] discussed the representation of necessity measure through the Choquet integral criterian. He also consider a decision maker who ranks necessity measures related with Choquet integral representation. In this paper, we consider a decision maker have an "ambiguity"(say, interval-valued) necessity measure according to their Choquet's expected utility. Furthermore, we prove two theorems which are weak Choquet integral representation of preferences with a monotone set function for interval-valued necessity measures and strong Choquet integral representation of preferences with an interval-valued utility function for necessity measures.